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Abstract

Cap-based regulations are widely used to address distributional disparities in match-

ing markets, but their efficiency relative to alternative instruments such as sub-

sidies remains poorly understood. This paper develops a framework for evaluating

policy interventions by incorporating regional constraints into a transferable utility

matching model. We show that a policymaker with aggregate-level match data can

implement a taxation policy that maximizes social welfare and outperforms any

cap-based policy. Using newly collected data from the Japan Residency Matching

Program, we estimate participant preferences and simulate counterfactual match

outcomes under both cap-based and subsidy-based policies. The results reveal that

the status quo cap-based regulation generates substantial efficiency losses, whereas

small, targeted subsidies can achieve similar distributional goals with significantly

higher social welfare.
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1 Introduction

Outcomes in real-world matching markets often diverge from socially desirable allocations,

particularly in terms of distributional equity. To address such imbalances, policymakers

often restrict the number of matches for certain categories. Examples of such regulations

include race-based affirmative action in U.S. college admissions aimed at promoting di-

versity (Ellison and Pathak, 2021), gender quotas in electoral systems designed to enhance

female representation (Besley et al., 2017), and the residency market in Japan analyzed

in Kamada and Kojima (2015), in which the government currently caps the number of

matches in high-demand urban areas to redirect applicants to underserved rural areas.

While such cap-based regulations are widely used, monetary interventions such as

taxes and subsidies offer a natural, yet comparatively underexplored, alternative. The

potential advantage of monetary interventions lies in their ability to account for the

intensity of preferences. A cap is a blunt instrument that may prevent high-surplus

matches, whereas a targeted subsidy could, in principle, influence marginal participants

without generating large welfare losses. It remains a central and unresolved question

for both theory and policy whether this theoretical potential translates into significant

efficiency gains, and under what conditions.

Answering these questions requires moving beyond the non-transferable utility (NTU)

framework that dominates the literature on matching with distributional constraints.

The NTU framework is ill-suited for policy analysis for two primary reasons. First, its

reliance on ordinal preferences cannot readily accommodate interventions involving taxes

or subsidies, or quantify their welfare consequences. Second, it typically treats transfers,

such as wages, as exogenous, failing to capture how they endogenously adjust in response

to policy interventions. These limitations underscore the need for a modeling approach

toward more efficient and credible policy intervention.

In this paper, we develop a transferable utility matching model that incorporates

regional constraints, defined as upper and lower bounds on the number of matches in

each region. Within this framework, a system of taxes and subsidies can implement the

matching that maximizes participants’ welfare among all those satisfying the constraints.

This welfare-maximizing outcome establishes a clear welfare benchmark against which

other policies can be evaluated. We then provide a path to empirical implementation

by embedding our model in the aggregate matching framework of Galichon and Salanié
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(2021a). This enables us to identify model primitives from past match data, compute

optimal subsidy policies, and conduct counterfactual simulations comparing their per-

formance to existing cap-based regulations. Applying this framework to newly collected

data from the Japan Residency Matching Program, our counterfactual simulations reveal

that the current cap-based policy generates substantial efficiency losses, whereas small,

targeted subsidies can achieve similar distributional goals with significantly higher social

welfare.

Distributional concerns have played a central role in Japan’s residency matching mar-

ket, prompting various proposals from both practitioners and researchers. In 2005, Japan

introduced a mandatory two-year residency program and adopted a centralized matching

system known as the Japan Residency Matching Program (JRMP). However, geographic

disparities in physician distribution have posed persistent challenges to equitable access

to healthcare since the program’s inception. In response, the JRMP began capping the

number of residency positions in urban areas in 2008 to encourage matches in underserved

regions.

The data reveal important limitations of the current cap-based policy and point to

potential sources of its inefficiency. Despite progressively tighter caps on urban positions

over the past decade, geographic imbalances in residency placements persist. Moreover,

the introduction of regional caps has been associated with a rising rate of unmatched

applicants. These patterns suggest that the cap-based policy currently employed by

the JRMP may be inefficient. One potential source of this inefficiency is the failure to

account for endogenous transfer formation. The data show substantial variation in salaries

across residency programs in Japan. In particular, less popular programs, especially those

located in rural areas, appear to offer higher compensation to attract medical students.

This observation motivates our modeling approach, which endogenizes transfers between

matched pairs.

In our model, each position belongs to a region, and caps and floors on the number

of matches in each region are exogenously determined. A policymaker aims to satisfy

these constraints, but they may not be satisfied in an equilibrium matching formed by

agents without intervention. If the policymaker has complete knowledge of market par-

ticipants’ preferences, she can induce the matching that maximizes social surplus among

all matchings that satisfy the regional constraints via a taxation policy. The taxes and

subsidies correspond to the Lagrange multipliers associated with the regional constraints
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in the social surplus maximization problem. This result implies that the taxation policy

strictly outperforms any cap-based policy, serving as a useful benchmark for evaluating

the efficiency of alternative policies, as it achieves the constrained-optimal.

In practice, policymakers rarely have full knowledge of individual preferences and must

infer them from past matching outcomes. To address this, we embed our framework in

the model introduced by Galichon and Salanié (2021a), which enables identification of

the primitives of the transferable utility model using only aggregate-level matching data.

This allows us to compute the optimal taxation policy from observed data (Theorem 1)

and to conduct counterfactual simulations to compare welfare across alternative inter-

ventions, including cap-based regulations (Proposition 1). These simulations also allow

us to quantify the relative inefficiencies of different policy tools.

For the empirical analysis, we start by defining the transfer between matched pairs

and then consider a measurement model for this transfer. To this end, we model the

baseline utilities of both sides for each pair of agents. The transfer from the hospital

to the matched resident represents the gap between this baseline utility and the equi-

librium utility level. By aggregating this transfer across the pairs within each hospital,

we construct an aggregate-level transfer. We then introduce a measurement model for

this aggregate-level transfer, which is linear in observed monthly salary. Our estimation

proceeds in two steps: first, we estimate the aggregate-level surplus split for each pair of

a medical school and a hospital, following Galichon and Salanié (2021a); second, based

on these first-step estimates, we recover the parameters in the baseline utilities and the

measurement model.

The estimation results partly align with those in the existing literature while also

presenting a departure from its assumptions. On the doctor’s side, our estimates indic-

ate that factors such as the distance between the hospital and the doctor’s alma mater,

as well as the hospital size, are significant. Furthermore, we find that the number of

previous matches is an important determinant of doctors’ preferences. These findings

are consistent with the existing literature, which suggests that hospitals are horizontally

differentiated from the perspective of doctors. On the hospital’s side, we observe that

hospitals exhibit horizontal preferences similar to those of doctors: doctors from distant

regions are less preferred, in addition to considerations of quality. Such horizontal prefer-

ence structure on the hospital side is not allowed in the existing literature, which hinders

the identification of preferences from matching data.

3



Our empirical estimates inform a series of counterfactual simulations designed to

quantify the inefficiency of existing regulations and evaluate policy alternatives. First,

a comparison between the status quo and an unregulated benchmark reveals that the

current urban caps, while effective at redirecting some residents, generate a substantial

aggregate welfare loss. Second, to distinguish the cost of the distributional goal itself

from the cost of the policy instrument, we simulate an optimal subsidy policy designed

to achieve the same resident distribution as the current cap-based system. We find that

a relatively small, targeted subsidy can meet this goal at a significantly higher level of

social welfare. This result indicates that the vast majority of inefficiency stems not from

the distributional constraint itself, but from the choice of regulatory instrument, the

caps. Our findings therefore suggest that policymakers can achieve distributional goals

more efficiently by replacing blunt quantity restrictions with carefully designed monetary

interventions. Finally, we test the limits of non-monetary interventions by simulating the

Flexible Deferred Acceptance mechanism, a sophisticated cap-setting algorithm proposed

by Kamada and Kojima (2015). Our results show that even this advanced mechanism

generates substantial welfare losses compared to an optimal subsidy policy. This finding

reinforces our conclusion that quantity restrictions are an inherently inefficient instrument

for achieving distributional goals.

Related literature Matching with constraints, initiated by Kamada and Kojima (2015),

has attracted considerable attention across various fields due to its applicability to real-

world settings (Abdulkadiroğlu and Sönmez, 2003; Ehlers et al., 2014; Kojima, 2012;

Hafalir, Yenmez and Yildirim, 2013; Fragiadakis and Troyan, 2017). A key departure

from their approach is our adoption of the TU framework in a matching market with

distributional constraints.

Recent studies by Kojima, Sun and Yu (2020) and Jalota, Ostrovsky and Pavone

(2025) investigate broad classes of distributional constraints, primarily focusing on the

existence of stable outcomes. If a firm in their model is regarded as a region, the two

models appear similar, but they differ in certain aspects. For instance, in our model, a

distinction should be made between matching a doctor to a single hospital in a region

and matching the same doctor to a different hospital in the same region; however, such

a distinction cannot be described in their models.1 Our analysis focuses on a specific
1This is analogous to the difference between the models for affirmative action such as Abdulkadiroğlu
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class of constraints, regional constraints, and studies the problem of a policymaker who

designs a taxation policy to ensure that these constraints are satisfied. We also extend

the model to accommodate empirical analysis using aggregate-level matching data.

Next, we highlight our contribution from the viewpoint of the empirical analysis of

matching markets. The structural analysis of matching markets is widely accepted in

many fields of economics, including labor economics and industrial organization, which

also adopts a type of matching model to describe trade networks (Fox, 2018; Fox, Yang

and Hsu, 2018). Notable methodological contributions are developed in Galichon and

Salanié (2021a): the nonparametric identification result of the social surplus function in

a transferable utility matching market, which is robust to distributional assumptions on

unobserved heterogeneity, along with the corresponding estimators2. This study builds on

the general framework of Galichon and Salanié (2021a), proposing an extended model that

accommodates regional constraints. Our framework is thus applicable without assuming

a specific distributional form for unobserved heterogeneity terms. Furthermore, diverging

from Galichon and Salanié (2021a), we propose a formal estimation strategy that exploits

a measurement of the transfer to quantify the parameter values in a monetary unit.

Lastly, we mention Agarwal (2015) as the closest empirical research to this study.

Agarwal (2015) takes a non-transferable utility matching model to analyze the doctor-

hospital matching market in the U.S. National Residency Matching Program (NRMP),

where a centralized mechanism determines the matching, and salaries are determined

almost exogenously. While Agarwal (2015) addresses the endogeneity of salaries using a

control function approach, our study fully models the salary determination process. This

difference reflects the variation in market environments: in Japan, the concentration in

urban areas presents more severe issues, and salaries are used as a tool to attract more

candidates. Furthermore, treating transfers endogenously allows us to recover prefer-

ences under counterfactual regulations and simulate the resulting matching outcomes.

This feature is particularly useful for policymakers when evaluating potential regulatory

interventions, which a non-transferable utility matching model, which treats transfers as

exogenous, cannot offer.

and Sönmez (2003) and the model of Kamada and Kojima (2015).
2The methodology in Galichon and Salanié (2021a) is also distinct compared to other methodologies

dependent on distributional assumptions, such as the minimum score estimator proposed by Fox (2010,
2017); Fox and Bajari (2013) and the maximum likelihood estimator of Choo and Siow (2006).
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1.1 Institutional Background of the JRMP

In 2004, Japan introduced a mandatory two-year residency training program. Under

the new program, residents and hospitals are matched through a centralized mechanism

called the Japan Residency Matching Program (JRMP). The JRMP is modeled after

the National Resident Matching Program in the United States. Medical students and

hospitals must register with the JRMP system and submit their respective preference

rankings. Students are provided with information about hospitals, including hospital

size, location, specifics of the training program, salary, and workload. Additionally, they

can participate in job fairs and directly visit hospitals to obtain further details. Before

submitting their preference lists, students are required to take examinations administered

by each hospital they consider ranking. Once the preference lists are finalized, the JRMP

employs the deferred acceptance algorithm to determine the matches. In 2023, the JRMP

involved 10,202 students and 1,209 hospitals offering 10,895 positions. On average, each

student listed 4.35 hospitals on their preference list. The algorithm successfully matched

87.9% of the students; specifically, 64.3% secured their first-choice hospitals, 16.3% their

second choice, and 9.0% their third choice.3

Researchers and Japanese media have reported that the distributional disparity of

physicians across regions has worsened following the introduction of the JRMP (Iizuka

and Watanabe, 2016; Sakai et al., 2013; Endo, 2019). One primary factor contributing

to this imbalance is that the centralized matching system allowed medical students to

freely express their location preferences, leading to a concentration of applicants in non-

university hospitals. Under the previous system, a majority of graduates would begin

their residency at the university hospital affiliated with their medical school.4 Many

medical graduates were affiliated with university medical departments, which directed

graduates to affiliated rural hospitals, maintaining a relatively balanced distribution.

However, the JRMP effectively removed the obligatory connection between graduates

and university departments, resulting in fewer graduates choosing positions in rural or

underserved regions. Consequently, rural hospitals faced increasing difficulties recruiting

physicians, exacerbating regional disparities in patient access to hospital services in these
3Unmatched students may individually contact hospitals with vacancies or reapply through the match-

ing process in the subsequent year.
4Although it was not mandatory, most medical students chose to undertake residency training after

graduation.
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areas.

To mitigate these regional imbalances, the JRMP introduced regional caps starting in

2010. The process for setting regional caps involves several steps. First, the total number

of residency positions nationwide is determined by multiplying the number of medical stu-

dents by a fixed constant. This constant was approximately 1.22 in 2015 but is scheduled

to be reduced gradually to 1.05 by 2025. After determining the nationwide cap, residency

positions are allocated across prefectures using a formula that incorporates factors such

as population size, medical school enrollment capacities, the current number of practicing

doctors, geographic considerations, including physician density (the number of doctors

per unit area), and populations in isolated or remote islands. This allocation method

is intentionally designed to benefit underserved areas by disproportionately reducing the

number of residency positions in urban regions. The rationale behind imposing regional

caps is that by restricting positions available in urban areas and tightening overall capa-

city, more medical graduates will be encouraged or compelled to pursue training in rural

regions, under the expectation that residents who train in these underserved areas are

more likely to remain and practice there long-term, thereby addressing existing regional

disparities.

2 Data

Our analysis covers the four years of matching results generated by the JRMP from

2016 to 2019. To estimate our model, we need three key elements: the matching patterns

between medical schools and hospitals, the characteristics of these institutions relevant to

their preferences, and the salaries paid to residents during their internships. We begin by

describing the data sources, present the descriptive statistics in Section 2.1, and discuss

the empirical matching patterns observed in the market in Section 2.2.

The matching patterns between medical schools and hospitals, i.e., the numbers of

matches between any given pair, are calculated based on the “Physician Registration

Report,” a certificate that summarizes the personal information of licensed physicians,

including residents. This data source allows us to calculate the annual number of matches

between specific medical schools and hospitals using information on their respective

graduating institutions and training hospitals.

We obtained the characteristics of hospitals from the JRMP website, which provides
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details such as hospital names, program offerings, and capacity. For the characteristics

of medical schools, we used the national exam pass rate and whether the university is

public, based on publicly available information from hospital websites. Additionally, to

measure the expected ability of graduates from a medical school, we used the T-score of

the entrance exam.5 T-scores are widely recognized as an indicator of university entrance

exam difficulty in Japan, with higher scores indicating more challenging universities. We

used the most recent T-scores available for our estimation.6

Finally, we gathered salary data by crawling hospital websites. Due to limited data

availability, we used the most recent salary information rather than data from 2016 to

2019, assuming that salary levels remained constant during this period. We also collected

additional hospital-related information, such as location, number of beds, and emergency

transport cases.

2.1 Descriptive Statistics

Table 1 summarizes the environment and the outcomes of JRMP for the years 2017, 2018,

and 2019. Since our estimation uses the matching patterns of the last year as one of the

covariates, we exclude the fiscal year of 2016. Panel A and Panel B in Table 1 summarize

the results of JRMP. The environment of the matching market—characterized by the

number of schools, students, hospitals, and available slots—remains stationary over these

three years, with minimal entry or exit. The matching outcomes, such as the unmatched

rate, also appear stable during this period. Based on these observations, we assume that

the preference structures of schools and hospitals remain unchanged throughout the data

period.

Despite the overall presence of unoccupied seats, as shown in Table 1, the fulfillment

rate by prefecture, defined as the ratio of the number of matches to the total number of

positions in each prefecture, exhibits substantial regional variation. Figure 1a displays

a choropleth map of fulfillment rates, while Figure 1b illustrates population densities

by prefecture in 2019. These figures suggest that rural areas, characterized by lower

population density, are less popular and experience lower fulfillment rates, even with the
5The T-scores of universities are published by cram schools. These scores are calculated using data

from practice exams administered by the cram schools, which gather information on students’ actual
university entrance exam results. The T-scores reflect the relationship between students’ performance
on practice exams and their success on university entrance exams.

6The data source is https://www.keinet.ne.jp/university/ranking/.
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Table 1. Environments and Outcomes of JRMP

2017 2018 2019

Panel A: Doctor side
Number of schools 78 78 78
Number of students 9830 9916 9932
Number of matched students 8530 8369 8634
Number of unmatched students 1300 1547 1298
Unmatch rate (%) 13.22 18.48 15.03

Panel B: Hospital side
Number of hospitals 1025 1025 1022
Number of total seats 11716 11468 11730
Number of matched seats 8530 8369 8634
Number of unmatched seats 3186 3099 3096
Unmatch rate (%) 27.19 27.02 26.39
Number of excess seats 1886 1551 1798
Excess rate (%) 16.01 13.52 15.33

current tight caps on urban areas.

Table 2 presents descriptive statistics for the characteristics of medical schools and

hospitals. Panel A summarizes the medical school variables. Medical schools are first

categorized as either private or public. There are 51 public medical schools and 27 private

ones. The T-score and graduation exam pass rate are used as proxies for student quality,

with higher values indicating greater ability. Public medical schools tend to have higher

average T-scores, suggesting that graduating from a public institution signals stronger

student qualifications. This difference is statistically significant.

Panel B summarizes the hospital-side variables. Hospitals are classified in two ways.

First, based on their affiliation with a university, they are categorized as either university

or non-university hospitals. Approximately 88.3% of hospitals have no university affil-

iation. University hospitals tend to have more beds on average, reflecting their typical

role as regional flagship hospitals. The second classification is based on location. Hos-

pitals situated in one of six prefectures—Tokyo, Kanagawa, Aichi, Kyoto, Osaka, and

Fukuoka—where official caps on the number of matches are imposed under the JRMP,

are defined as being in urban areas. The remaining hospitals are considered rural. Al-

though this definition includes only six of the forty-seven prefectures in total, 33.7% of

all hospitals fall into the urban category. Urban hospitals also tend to be larger in size.

We examine the total variation in salaries in the JRMP market. The latter half of

Panel B reports significant variation in the salaries of medical interns across Japan. For
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(a) Fulfillment Rates (b) Population Density

Figure 1. Fulfillment Rate and Population Density

example, in 2017, the average annual salary was approximately $31,714, with a standard

deviation of $8,166.7 For comparison, Table 1 of Agarwal (2015) reports that the mean

salary for similar medical interns in the United States was $47,331, with a standard

deviation of $2,953. While average salaries are higher in the U.S., the standard deviation

in Japan is 2.77 times larger, indicating greater salary dispersion. This variation reflects

salary differentials across regions: on average, rural hospitals offer significantly higher

monthly wages—by $430 (63,760 JPY)—than their urban counterparts. At the same

time, affiliation with a university is associated with significantly lower pay, with university

hospitals paying $692 (101,000 JPY) less on average.

2.2 Empirical Matching Pattern

In line with Agarwal (2015), we estimate a set of regressions to characterize the match-

ing patterns between hospitals and students. Due to the unavailability of individual

matching data, we first calculate the weighted averages of the characteristics of matched

partners within each medical school and hospital. These aggregated characteristics are

then regressed on the covariates of the medical schools and hospitals. We also regress the

unmatch rate of each hospital and school on their characteristics to identify the types of

students who are more likely to go unmatched in this market. We use random effects

models to account for the correlation between unobserved error terms and observed co-
7The conversion from yen to dollars was based on the exchange rate as of August 30, 2024.
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Table 2. Summary Statistics of Medical-School and Hospital Covariates

Category Count Mean Std Min Max

Panel A. Medical Schools
T-score Private 27 64.96 2.17 62 72

Public 51 66.38 2.66 63 74

Panel B. Hospitals
Number of beds Rural 684 417.99 155.92 36 1195

Urban 348 472.48 217.84 38 1379
Non-university 911 411.08 147.73 36 1097
University 121 626.74 272.77 295 1379

Monthly Salary (×100,000 JPY) Total 1032 3.864 0.995 1.800 8.550
Rural 684 4.079 0.984 1.800 8.550
Urban 348 3.452 0.875 1.900 6.847
Non-university 911 3.986 0.978 2.225 8.550
University 121 2.976 0.566 1.800 4.720

* The summary statistics for monthly salary are based on the three-year average from 2017 to 2019 for
each of the 1,032 hospitals.

variates in our panel matching data.8 We compute cluster-robust standard errors where

the cluster is set to the unit level: the hospital level for the hospital perspective and the

school level for the school perspective.

Table 3 reports the regression results on matching patterns from the perspective of

hospitals. The first and second column dependent variables represent the quality of

matched students, so the positive correlations with hospital size shown in the first row are

in line with expectations. The second row shows a notable finding about the role of urban

location. It is natural to expect that urban hospitals attract higher-quality students—as

urban areas are generally more preferred by students—this pattern is indeed observed for

difficulty. However, urban hospitals are less likely to match with highly qualified students

from public universities. This pattern suggests that public universities play a significant

role in supplying physicians to rural areas. There is no statistically significant pattern in

the distance between the matched students and their universities. As for the unmatch

rate, urban hospitals exhibit fewer vacancies, as expected.

One straightforward explanation for the frequent matching between public universities

and rural hospitals is geographic proximity: every prefecture hosts at least one public

medical school. At the same time, higher salaries appear to serve as a strong incentive
8Since our main interest lies in the coefficients on time-invariant covariates, such as the urban hospital

dummy and public university dummy, we do not use a fixed effects model.
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Table 3. Matching from Hospital Viewpoint

(1) (2) (3) (4)
Public Difficulty Distance Unmatch Rate

ln Beds 0.0576*** 6.286*** 9.081 -0.146***
(0.0222) (1.190) (10.29) (0.0227)

Urban Hospital -0.113*** 3.179*** 2.837 -0.148***
(0.0176) (0.822) (9.661) (0.0150)

Observations 3072 3072 3072 3072
Year dummy

√ √ √ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

Table 4. Matching from School Viewpoint

(1) (2) (3) (4)
Urban Hospital ln Wage Distance Unmatch Rate

Public University -3.055*** 1.335*** 425.7 -1.416**
(1.088) (0.391) (539.0) (0.633)

Difficulty 0.0115 0.00452 -16.16** -0.0220**
(0.0146) (0.00433) (6.540) (0.00956)

Observations 234 234 234 234
Year dummy

√ √ √ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

to retain talented students from public universities in rural areas after graduation. As

shown in Table 4, which presents the regression results from the perspective of medical

schools, graduates from public universities are more likely to match with rural hospitals

and receive higher salaries. This finding supports the view that salary is a significant

factor in students’ preferences to sustain an equilibrium in which rural hospitals offer

higher wages to retain talented graduates. Table 4 also shows that graduates from more

competitive universities tend to match with nearby hospitals, suggesting that distance is

an important factor in residents’ choices. As expected, graduates from more prestigious

universities are less likely to go unmatched.
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3 Model

Matching market with regional constraints We consider a two-sided matching

market. Let I denote the set of doctors (medical students) and J the set of job slots

owned by hospitals. Each doctor i ∈ I can be matched with at most one slot j ∈ J ,

and each slot can accommodate at most one doctor. If a doctor i is unmatched, they are

paired with an outside option j0. Similarly, an unmatched slot j is paired with an outside

option i0. A matching is represented by a 0-1 matrix d = (dij)i∈I,j∈J , where dij = 1 if and

only if doctor i is matched with slot j. A matching d is feasible if each doctor is matched

to exactly one slot or the outside option, and each slot is matched to exactly one doctor

or the outside option:
∑

j∈J dij ≤ 1 for all i ∈ I, and
∑

i∈I dij ≤ 1 for all j ∈ J .

There is a policymaker who faces an additional condition called regional constraints.

There are L regions, denoted by Z = {z1, z2, . . . , zL}, with each job slot j assigned to one

region. Additionally, we define a special region z0 that contains only the outside option

j0. With a slight abuse of notation, let z : J ∪{j0} → Z∪{z0} be the mapping where z(j)

indicates the unique region to which job slot j belongs. Each region z has a cap and a

floor, oz ∈ R+ and ōz ∈ R+∪{∞}, where oz < ōz for each z. We say a feasible matching d

satisfies regional constraints if it respects the caps and the floors:
∑

i∈I
∑

j∈z dij ∈ [oz, ōz]

for each z ∈ Z. Throughout the paper, we assume that at least one feasible matching

exists that satisfies regional constraints.9

Stable outcome under taxation policy Agents form a stable outcome à la Shapley

and Shubik (1971). Without policy intervention, the realized matching may not meet the

regional constraints. The policymaker can implement a taxation policy that influences

the split of the joint surplus among agents to satisfy the regional constraints. When a

doctor i and a slot j are matched, they generate an (individual-level) net joint surplus

Φij ∈ R. Denote by Φi,j0 and Φi0,j the payoffs i ∈ I and j ∈ J receive when unmatched,

respectively. The tax wz ∈ R is imposed on each match (i, j) in region z, with negative

taxes being interpreted as subsidies. We assume wz0 = 0, i.e., no tax is imposed on the

outside option. With taxation policy w = (wz)z∈Z , each matched pair divides the gross

joint surplus Φij − wz(j) instead of the net joint surplus. 10 The stable outcome under a

9Formally, we assume oz ≤ |{j : j ∈ z}| for each z ∈ Z, and |I| ≥∑z oz.
10In principle, the policymaker could set pair-specific taxes. We restrict our definition of a taxa-

tion policy to be uniform within each region; however, this is without loss of generality: the welfare-
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taxation policy is defined as follows:

Definition 1 (Stable outcome). Given the matching market (I, J, Z, z,Φ),11 a profile

(d, (u, v)) of feasible matching d and equilibrium payoffs (u, v) forms a stable outcome

under taxation policy w if it satisfies:

1. Individual rationality: For all i ∈ I, ui ≥ Φi,j0, with equality if i is unmatched. For

all j ∈ J, vj ≥ Φi0,j, with equality if j is unmatched.

2. No blocking pairs: For all i ∈ I and j ∈ J , ui + vj ≥ Φij − wz(j), with equality if

dij = 1.

While it is reasonable to assume that participants form a stable outcome in many

frictionless and decentralized environments, such as certain labor or marriage markets, the

appropriateness of this assumption depends on the specific application. In Appendix A.1,

we show that any stable outcome can be supported as an equilibrium of a stylized game

that mirrors the JRMP’s matching process.

A cap-based policy is represented by removing a subset of slots from the market.

Let J ′ ⊆ J denote the set of slots that remain after the policy is applied; this subset

characterizes the cap-based policy. Operationally, this removal is equivalent to imposing

an upper bound (a cap) on the number of slots. Let Φ′ := (Φij)i∈I, j∈J ′ denote the

submatrix of Φ corresponding to the remaining doctors and slots. Given J ′, the agents

form a stable outcome in the reduced market (I, J ′, Z, z,Φ′) under the assumption that

taxation policy is absent, that is, w ≡ 0.

Unobserved heterogeneity Let X = {x1, x2, . . . , xN} represent the finite set of ob-

servable characteristics, or types, of doctors. Each doctor i ∈ I has a type x(i) ∈ X.

Similarly, let Y = {y1, y2, . . . , yM} represent the finite set of observable characteristics of

job slots, with each slot j ∈ J having a type y(j) ∈ Y . Although agents with the same

type are indistinguishable to the policymaker, there can be unobservable heterogeneity :

doctors of the same type x or job slots of the same type y may generate different joint

surpluses when matched. For convenience, we denote i ∈ x if x(i) = x and j ∈ y if

y(j) = y. We define x0 and y0 as special types representing the outside options i0 and

maximizing taxation policy is, in fact, uniform, imposing the same tax on all pairs within a given region
(see Section 4.1 for the related discussion and Appendix A.2 for the formal proof).

11The symbol z denotes the mapping from job slots to regions.
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j0, respectively, and let X0 = X ∪ {x0} and Y0 = Y ∪ {y0} include these outside options.

The set of all type pairs is denoted by T = X0× Y0 \ {(x0, y0)}. We assume each job slot

type y ∈ Y belongs to a unique region, denoted by z(y) ∈ Z. Let nx be the number of

doctors with type x, and my be the number of job slots with type y.

Let µxy denote the number of matches between type-x doctors and type-y job slots,

defined as µxy =
∑

i∈x
∑

j∈y dij. An aggregate-level matching µ = (µxy)x∈X,y∈Y is said to

be feasible if it satisfies the population constraints
∑

y µxy = nx and
∑

x µxy = my for each

x and y. Furthermore, we say µ satisfies regional constraints if
∑

y∈z
∑

x∈X µxy ∈ [oz, ōz]

for each z ∈ Z.

Types y ∈ Y and regions z ∈ Z can be interpreted in various ways. For example, in

our application, a type y may correspond to a hospital, and a region z may correspond

to a district (e.g., a prefecture). In other contexts, a type could represent a subcategory

of occupation (e.g., registered nurse, physician assistant), and a region could represent a

broader occupational category (e.g., healthcare).

4 Theoretical Results

4.1 Relative Efficiency of Caps and Taxation

To build intuition for our main analysis, this subsection begins with a stylized model

that abstracts from unobserved heterogeneity. In this benchmark case, we provisionally

assume that the policymaker knows all joint surplus values, Φij. While this assumption

is relaxed later, it clearly illustrates the properties of the optimal taxation policy, which

is defined below, and its relationship to cap-based policies, which remain valid even in

the presence of unobserved heterogeneity.

Given a matching d, the social surplus is defined as
∑

i,j dijΦij, the total net joint

surplus generated by the matching d. Consider the following social surplus maximization

problem subject to regional constraints:
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(P0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
d∈{0,1}I×J

∑
(i,j)∈I

Φijdij +
∑
i∈I

(
1−

∑
j∈J

dij

)
Φi,j0 +

∑
j∈I

(
1−

∑
i∈I

dij

)
Φi0,j

subject to
∑
j∈J

dij ≤ 1 ∀i ∈ I,

∑
i∈I

dij ≤ 1 ∀j ∈ J,

oz ≤
∑
j∈z

∑
i∈I

dij ≤ ōz ∀z ∈ Z,

Let d∗ denote a solution to (P0); that is, d∗ is the matching that maximizes social surplus

subject to the regional constraints.

Given full knowledge of the joint surplus matrix Φ, there exists an optimal taxation

policy that implements d∗ as a stable outcome. This implies that, within our frame-

work, the optimal taxation policy outperforms any cap-based policy: no cap-based policy

that satisfies the same regional constraints can generate a higher social welfare than the

optimal taxation policy. The taxes and subsidies are characterized by the Lagrange mul-

tipliers on the binding regional constraints and can be computed via linear programming.

(see Appendix A.2 for details.) A key feature of this optimal taxation policy is its struc-

ture: it consists of a single tax or subsidy wz for each region z ∈ Z, and the same amount

is applied uniformly to all matches within a region, despite the theoretical possibility of

setting pair-specific taxes. This significantly simplifies implementation.

The following example illustrates that the relative efficiency of a cap-based policy,

measured as the ratio of its social welfare to the optimal taxation benchmark, can take

any value in (0, 1), depending on the model’s parameters. This underscores the need for

empirical analysis to quantify the actual welfare loss in any given application.

Example 1. Consider two doctors, i1 and i2; two regions, z1 and z2; and two slots,

j1 ∈ z1 and j2 ∈ z2. Region z2 is subject to a floor constraint oz2 = 1, while there are no

other regional constraints. The value of outside options is normalized to zero, and the

joint surplus matrix is given by

Φ :=


j1 j2

i1 a δ

i2 b −ε

,
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where a, b, δ, ε > 0 and a ≥ δ + b+ ε.

No intervention The stable matching pairs i1 with j1, leaving i2 unmatched. The

resulting social welfare is a, but the regional constraint is violated.

Cap-based policy The policymaker meets the constraint by removing the urban slot,

j1. The reduced surplus matrix becomes

Φ′ :=


j2

i1 δ

i2 −ε

.
In this case, i1 is matched with j2, yielding social welfare δ.

Optimal subsidy policy The policymaker retains both slots and subsidizes matches

in region z2 by ε. The resulting gross surplus matrix is


j1 j2

i1 a δ + ε

i2 b 0

.
The matching i1 to j1 and i2 to j2 forms a stable outcome, achieving social welfare of

a− ε.

Comparison The ratio δ/(a−ε) compares the social welfare under the cap-based policy

to that under the taxation policy. This ratio can take any value in (0, 1], while satisfying

the condition a ≥ δ + b+ ε.12

This example also illustrates how the inefficiency of a cap-based policy arises. As a

blunt instrument, the cap satisfies the rural constraint by eliminating the high-surplus

urban slot, j1. This forces the most productive doctor, i1, into a significantly less-valued

match, sacrificing the large surplus generated by the (i1, j1) pair. A targeted subsidy,

in contrast, achieves the goal more efficiently. By making the undesirable rural match,
12For example, the ratio equals 1 if δ = a− ε, b = ε, and ε ≤ a/2. In contrast, suppose that δ = ε and

b ≤ a− 2ε. As δ and ε approach zero, the ratio converges to zero.
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(i2, j2), just palatable enough for the marginal doctor, i2, it fulfills the constraint while

leaving the most productive match in the market, (i1, j1), undisturbed.

4.2 Preliminary Results

To account for unobserved heterogeneity in preferences, this subsection reviews the frame-

work of Galichon and Salanié (2021a), which links the individual-level objects, (Φij)ij,

(dij)ij, (ui)i, and (vj)j, introduced in Section 3 to their aggregate-level counterparts re-

quired for our analysis.

Discrete Choice Representation For any pair (i, j) with doctor i of type x and slot

j of type y, we assume that the individual-level joint surplus decomposes as

Φij = Φxy + εiy + ηxj,

where Φxy is the aggregate-level joint surplus and εiy and ηxj are independent error terms.

For each type x and every doctor i ∈ x, the vector (εiy)y∈Y0 is drawn from a distribution

Px ∈ ∆(R|Y |+1). Similarly, for each type y and every slot j ∈ y, the vector (ηxj)x∈X0 is

drawn from a distribution Qy ∈ ∆(R|X|+1).

Assumption 1 (Independence). The error terms are independent across all doctors and

slots.

Assumption 2 (Additive Separability). There exists a matrix (Φxy)(x,y)∈T such that:

1. For every x ∈ X, y ∈ Y , i ∈ x, and j ∈ y,

Φij = Φxy + εiy + ηxj;

2. For every x ∈ X and y ∈ Y ,

Φi,y0 = εi,y0 and Φx0,j = ηx0,j.

We define the aggregate-level utilities Uxy and Vxy, which depend solely on types, as
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follows. For each x ∈ X and y ∈ Y , let

Uxy := min
i :x(i)=x

{ui − εiy}, Vxy := min
j : y(j)=y

{vj − ηjx}, (1)

with the normalization Ux,y0 = Vx0,y := 0. The following lemma shows that the matching

market can be represented as a bilateral discrete choice problem.

Lemma 1 (Galichon and Salanié (2021a)). Let (u, v) be a payoff profile corresponding to

a stable outcome. Under Assumption 2, for any doctor i ∈ I and any slot j ∈ J , we have

ui = max
y∈Y0

{
Ux(i),y + εiy

}
, vj = max

x∈X0

{
Vx,y(j) + ηxj

}
.

Proof. See Appendix A.3.

Large Market Approximation By Lemma 1, the social welfare on the doctor side,

defined as the sum of the equilibrium payoffs, can be expressed as

∑
i∈I

ui =
∑
x∈X

nx

(
1

nx

∑
i∈x

max
y∈Y0

{Uxy + εiy}
)
.

When the number of doctors of type x, denoted by nx, is large, the average

1

nx

∑
i∈x

max
y∈Y0

{Uxy + εiy}

is well approximated by its expected value: Eεi∼Px [maxy∈Y0 {Uxy + εiy}]. Thus, the social

welfare on the doctor’s side becomes

G(U) :=
∑
x∈X

nx Eεi∼Px

[
max
y∈Y0

{Uxy + εiy}
]
.

Similarly, if the number of slots of type y, denoted by my, is large, the social welfare on

the hospital side is approximated by

H(V ) :=
∑
y∈Y

my Eηj∼Qy

[
max
x∈X0

{Vxy + ηxj}
]
.

Under the assumption that the cumulative distribution functions of the error terms are

continuously differentiable, the Williams-Daly-Zachary theorem (McFadden, 1980) im-
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plies that

∂G

∂Uxy

(U) = nx Pr(doctor of type x chooses a slot of type y) .

For sufficiently large nx, the product nx Pr(doctor of type x chooses a slot of type y) provides

a good approximation of µxy.

Assumption 3 (Smooth Distribution). For each x and y, the cumulative distribution

functions Px and Qy are continuously differentiable.

4.3 Design and Evaluation of Policies with Unobserved Hetero-

geneity

An aggregate-level matching market is characterized by the tuple

M := (X, Y, n,m,Z, z,Φ, P,Q),

where n := (nx)x, m := (my)y, Φ = (Φxy)xy, P = (Px)x, and Q = (Qy)y. The poli-

cymaker, facing unobserved heterogeneity, seeks (i) to determine the optimal taxation

policy w that maximizes social welfare subject to regional constraints and (ii) to com-

pute the matching and social welfare outcomes for various policies. For these purposes,

we formulate optimization problems that depend solely on the aggregate-level surplus

(Φxy)x,y. An additional technical assumption on the error term distributions guaran-

tees that G and H are strictly convex,13 thereby ensuring a one-to-one correspondence

between an aggregate-level matching µ and the aggregate-level utilities U and V given

taxation policy w.

Assumption 4 (Full Support). For each x and y, supp(Px) = R|Y0| and supp(Qy) =

R|X0|.

We now define the following concave programming problem, which is a counterpart

of the social surplus maximization problem (P0) for the case without unobserved hetero-

geneity:
13See Appendix A.4 for details.
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(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
µ≥0

∑
(x,y)∈T

µxyΦxy + E(µ)

subject to
∑
y∈Y0

µxy = nx ∀x ∈ X,

∑
x∈X0

µxy = my ∀y ∈ Y,

oz ≤
∑
y∈z

∑
x∈X

µxy ≤ ōz ∀z ∈ Z,

where

E(µ) := −G∗(µ)−H∗(µ),

and G∗ and H∗ denote the Legendre-Fenchel transforms of G and H, respectively.14 Its

dual problem is given by

(D)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
U,V,w̄z ,wz

G(U) +H(V ) +
∑
z∈Z

ōzw̄z −
∑
z∈Z

ozwz

subject to Uxy + Vxy ≥ Φxy − w̄z(y) + wz(y) ∀(x, y) ∈ T,

w̄z ≥ 0, wz ≥ 0 ∀z ∈ Z.

The primal problem (P) admits an optimal solution because its objective function is

continuous and its feasible set is compact and nonempty. By strong duality,15 the dual

problem (D) attains the same optimal value. Moreover, both (P) and (D) possess unique

solutions, as we show below.

The optimal value of (P) and (D) represents the social surplus generated under equi-

librium matching µ. 16 The following theorem states that, given regional constraints

(ōz, oz)z, the optimal taxation policy w∗ together with the corresponding aggregate-level

matching and utilities (µ, U, V ) are characterized by the solutions to (P) and (D).

Theorem 1. Assume that Assumptions 1–4 hold. Fix any aggregate-level matching mar-

ket M. Then,
14Since G and H are proper convex functions, their Legendre-Fenchel transforms are well-defined.
15The constraints of the primal problem satisfy the weak Slater condition, as they are affine in µ.
16For any w, we can first rewrite the dual problem of (P0) using the aggregate level objects. We can

show that (Dw) defined in the statement of Proposition 1 coincides with the dual problem under the
large market approximation (see Section 1.4 of Galichon and Salanié (2021b) for more details.) Then,
this statement follows from the second part of Theorem 1. See also Appendix B for more details about
the large market approximation.
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1. There is a unique solution to (P) and (D), denoted by µ∗ and (U∗, V ∗, w̄∗, w∗),

respectively.

2. Define, for each z,

w∗
z := 1{w̄∗

z > 0}w̄∗
z − 1{w∗

z > 0}w∗
z.

Then, w∗ is the optimal taxation policy, and (µ∗, U∗, V ∗) constitute the correspond-

ing aggregate-level matching and utilities.

Proof. See Appendix A.4.

We can also obtain the aggregate-level matching and utilities (µ, U, V ) corresponding

to any given taxation policy w by solving the following pair of optimization problems.

Proposition 1. Assume that Assumptions 1–4 are satisfied. For any aggregate-level

matching market M and any taxation policy w, the resulting aggregate-level matching

and utilities, denoted by (µ(w), U(w), V (w)), are characterized as the solutions to

(Pw)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximizeµ≥0

∑
(x,y)∈T

µxy

(
Φxy − wz(y)

)
+ E(µ)

subject to
∑
y∈Y0

µxy = nx, ∀x ∈ X,

∑
x∈X0

µxy = my, ∀y ∈ Y,

and

(Dw)

∣∣∣∣∣∣∣∣∣∣
minimizeU,V G(U) +H(V )

subject to Uxy + Vxy ≥ Φxy − wz(y), ∀(x, y) ∈ T.

For a given taxation policy w, the tuple (µ(w), U(w), V (w)) defined in Proposition 1 is

referred to as an aggregate equilibrium (AE) under w. When w is optimal, the equilibrium

is termed the efficient aggregate equilibrium (EAE).
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5 Empirical Strategy

We begin by mapping the primitives and equilibrium objects in the model described in

Section 3 and 4 to their empirical counterparts in the doctor-hospital matching market.

We use the following notation:17 a doctor is denoted by i, and a job slot is denoted by

j. Each doctor belongs to a medical school, and each slot is offered by a hospital, where

s represents a school and h represents a hospital. We consider s and h as observable

types of doctors and slots, using s(i) to denote the medical school to which doctor i

belongs, and h(j) to denote the hospital offering slot j. The matching market operates

over T ∈ N periods, with t denoting each observation period. Let Z denote the set of

regions and z(h) denote the region to which hospital h belongs, assuming z(h) remains

constant over time. The aggregate-level joint surplus at time t is denoted by Φsht. The

unobserved part (error term) of doctor i’s preference for hospital h is denoted by εiht,

while the unobserved part of slot j’s preference for school s is denoted by ηsjt.18 The

net joint surplus satisfies the equality: Φijt = Φs(i)h(j)t + εih(j)t + ηs(i)jt for each i ∈ I,

j ∈ J , and t ∈ [T ].19 The matching (dijt)i,j,t is not observable. Instead, the available

data comprises the aggregate-level matching (µsht)s,h,t, which is the number of matches

between medical school s and hospital h at time t.

We suppose that the observed numbers of matches in a year constitute the aggregate

equilibrium of the matching market of the year under no tax. 20 Hence, following Galichon

and Salanié (2021a), we can identify and estimate the aggregate-level utilities of both

sides by polynomial functions. This step is the first stage of our estimation described

in Section 5.2.1. Additionally, we use the data on doctors’ salaries paid by hospitals

to evaluate welfare in monetary terms. For this objective, we impose an additional

structure on the composition of the net joint surplus. We then introduce the concept of
17Type x and y in previous sections are replaced by s (school) and h (hospital), respectively.
18In our model, different slots in a hospital may have different preferences. This is possible when, for

example, the admission office is composed of members with varying tastes for schools, such as a strong
preference for the school from which they graduated. ηsjt reflects these differences in the committee
members’ preferences.

19[T ] := {1, 2, . . . , T − 1, T}.
20In other words, we do not consider the current matching outcome to be affected by any monetary

intervention aimed at satisfying regional constraints. In Appendix D.1, we check if this assumption
is valid in our data. We estimate our model under the assumption that the matching outcome forms
the efficient aggregate equilibrium under a regional constraint. The estimated value of tax levied does
not increase, whereas the regional constraint set by the policymaker is gradually tightened. This result
indicates that “implicit” taxation has never been implemented during our data period.
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transfers between matched pairs in the individual-level market and define an aggregate-

level transfer used in our estimation. In Section 5.2.2, we describe the second step of

our estimation, which includes a measurement model for connecting the salary to the

aggregate-level transfer.

5.1 Transfer

To define a model object corresponding to the observed salary, we impose an additional

structure on the net joint surplus. The base utility of i when matched with j at time

t is the utility felt by i when matching with j net of transfer, and is denoted by Ubase
ijt .

Similarly, the base utility of j when matched with i at time t is denoted by V base
ijt . The

net joint surplus is the sum of the base utilities of a doctor and a slot forming the match,

i.e.,

Φijt = Ubase
ijt + V base

ijt . (2)

Furthermore, in accordance with additive separability (Assumption 2), we re-interpret

the i.i.d. error terms as the unobserved taste shocks of the agents on both sides of the

market. In other words, we assume the following utility structure:

Assumption 5.

Ubase
ijt = Ubase

sht + εiht, V base
ijt = V base

sht + ηsjt.

We call Ubase
sht and V base

sht by aggregate-level base utility : they are a part of base util-

ities, which are determined by the observable characteristics. As a direct implication of

Assumption 2, 5 and (2), we have Φsht = Ubase
sht + V base

sht . Note that the aggregate-level

base utility Ubase
sht can be different from the aggregate-level utility Usht introduced in (1).

Fix any period t. Consider a matched pair (i, j) with h(j) = h and z(h(j)) = z for

some h and z. We define individual-level transfer from hospital h to doctor i, denoted by

τiht, as follows:

τiht := uit − Ubase
ijt .

In equilibrium, doctor i enjoys equilibrium payoff uit, which could be different from Ubase
ijt .
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We interpret the difference between equilibrium payoff and base utility as the individual-

level transfer from the hospital side to the doctor side.

Now we define an aggregate-level transfer from hospital h as the average of the individual-

level transfer in a hospital h and denote it by ιht:

ιht :=
1

|D(h)t|
∑

i∈D(h)t

τiht,

where D(h)t is the set of doctors matched with any slot of hospital h at time t. We can

show the following identities: the aggregate-level transfer from a hospital is equal to the

weighted average of the gap between the aggregate-level utility and the aggregate-level

base utility. We use these identities as moment conditions to identify the aggregate-level

base utility.

Proposition 2.

ιht =
∑
s

ωsht

(
Usht − Ubase

sht

)
, ιht =

∑
s

ωsht

(
V base
sht − Vsht

)
(3)

where ωsht =
µsht∑
s′ µs′ht

.

5.2 Estimation

Based on the observable characteristics of s and h, we have a set of variables related to

the preferences: we use XU,base
sht as the variables for Ubase

sht , and XV,base
sht as the variables for

V base
sht . We assume linear structure on both of the preferences: Ubase

sht = XU,base′
sht βU , V

base
sht =

XV,base′
sht βV . Our parameters of interest are βU and βV . We use θ to indicate the vector of

these parameters: θ := (βU , βV ).

Our estimation consists of the following two steps:

1. Estimate the aggregate-level utilities Usht and Vsht for every t, and then

2. Estimate θ using the estimated aggregate-level utilities and the observed salaries.

5.2.1 First Step

Despite the nonparametric identification results obtained in Galichon and Salanié (2021a),

we estimate the parametrized version of the aggregate-level utilities. This is because some
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pairs of schools and hospitals have zero matches in practice. Hence, in the first step, we

use the moment matching estimator proposed in Galichon and Salanié (2021a) to estimate

Usht and Vsht.21

By formulating the aggregate matching outcome µsht as a realization of a Poisson

distribution, it is possible to estimate the aggregate-level utilities by a Poisson regression

with fixed effects. For a regressor in the Poisson regressions, we make a set of polynomials

for some degree from XU
sht and XV

sht, which is denoted by Xpoly
sht . We model the aggregate-

level utilities as follows:

Usht = Xpoly′
sht βpoly

U , Vsht = Xpoly′
sht βpoly

V . (4)

We use β̂poly
U and β̂poly

V as the estimated coefficients attached with the polynomials.

And we define the estimated aggregate-level utilities by Ûsht ≡ Xpoly′
sht β̂poly

U and V̂sht ≡
Xpoly′

sht β̂poly
V . In Appendix A.5, we describe the relationship between the moment match-

ing estimator and the two-way fixed effect Poisson regression, which complements the

discussion in Galichon and Salanié (2021b).

5.2.2 Second Step

When we directly observe the values of ιht for all hospitals and periods, we can use (3)

to construct an estimator of θ. By inserting the estimation results in the first step, we

construct the following moment conditions for θ:

∑
s

ωsht

(
XU,base′

sht βU

)
=
∑
s

ωshtÛsht − ιht, ∀ h, t∑
s

ωsht

(
XV,base′

sht βV

)
=
∑
s

ωshtV̂sht + ιht, ∀ h, t.
(5)

In Appendix C, we show a Monte Carlo exercise adopting this approach to show how to

recover the structural parameters.

In practice, we face a measurement problem: we cannot observe the aggregate-level

transfer ιht. Instead, we can only observe the realized salaries paid by hospitals every

period. It is important to note that salary represents only one component of the total

transfer in this market, which also includes non-monetary aspects. For example, the
21Note that our estimation target is Usht and Vsht. The difference from the case of Galichon and

Salanié (2021a) is that we just need one side fixed effect.
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hospital accepts the risk of medical incidents by allowing the less-experienced medical

interns to get more practice on the job. The workload in a hospital also comprises such

unobserved transfers. Furthermore, we expect that the observed salaries correlate with

these unobservable terms, which makes the identification more demanding.

For this problem, we introduce a measurement model to connect the observed salaries

to ιht. Denoting the salary paid in a hospital h at time t by Sht, we assume that both

schools and hospitals have quasi-linear utilities with respect to monetary transfers:

ιht = γ0,U + γ1,USht + ψU
ht

−ιht = γ0,V + γ1,V Sht + ψV
ht.

γ1,V is expected to be negative because the salary is the amount of money paid to the

doctor by the hospital. ψU
ht is the unobserved transfer from the hospital to the matched

doctors, and ψV
ht is the same unobserved transfer from the doctor to the hospital.

The unobserved transfer is likely correlated with the observed monetary transfer.

Hence, we need some instrumental variables that have an influence only on the salary.

As such instrumental variables, we use the characteristics of the surrounding hospitals

as in Berry, Levinsohn and Pakes (1995). The rationale behind these instruments is

that a hospital considers the characteristics of other hospitals when setting its salary,

whereas the unobserved transfer is not known to others. In practice, we use only the

characteristics of nearby hospitals located within a 20 km radius of a given hospital as

instrumental variables for the salary, even though our model accounts for all hospitals

operating within the same market.

By combining the moment conditions and the measurement model, estimating equa-

tions are specified as follows:

∑
s

ωshtÛsht = γ0,U + γ1,USht +
∑
s

ωsht

(
XU ′

shtβU
)
+ ψU

ht∑
s

ωshtV̂sht = γ0,V + γ1,V Sht +
∑
s

ωsht

(
XV ′

shtβV
)
+ ψV

ht.

When we take the weighted average of every variable in XU
sht and XV

sht as independent

variables in the right-hand side, the above equations are just linear equations in θ. We

estimate these linear equations using the instrumental variables discussed above.
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6 Empirical Results

In this section, we show the estimation results. In Section 6.1, we show the estimation

results of our first step. In Section 6.2, we show the estimation results of our second step:

the preference parameters of both sides of the market.

6.1 First Step

From 2017 to 2019, we estimate the aggregate-level utility of both sides separately. The

degree of the polynomial approximating the aggregate-level utility is our tuning para-

meter. In this section, we show the results obtained when we choose three as the degree

of polynomials, as this choice allows a more flexible functional form. In Appendix D.3,

we show the results obtained when the degree of the polynomials is set to two.

Each panel in Figure 2 shows the observed matching pattern (leftmost figure), the

estimated aggregate-level social surpluses (second from the left), the estimated aggregate-

level utilities from the doctors’ side (second from the right), and the estimated aggregate-

level utilities from the hospitals’ side (rightmost figure). All figures are heatmaps, where

the vertical axis represents the indices of medical schools and the horizontal axis represents

the indices of hospitals.22 In the right three heatmaps, brighter colors indicate higher

values.

The visible pattern in the aggregate matching is well captured by our estimation.

Specifically, all the heatmaps reflect the likelihood of matches between graduates from

local public universities and nearby hospitals. As illustrated in the rightmost figures,

even from the hospitals’ perspective, graduates from closer medical schools provide higher

aggregate-level utility. 23 This pattern can be interpreted as evidence of the importance of

local knowledge: knowledge of the local medical environment is so critical that hospitals

prefer to hire local doctors.

6.2 Second Step

Based on the estimation results from the first step, we calculate the marginal effects of

covariates on the base utilities. We include the following hospital-specific variables as the
22The way to set the index is described in Section 2.
23In contrast, Agarwal (2015) highlights that distance influences doctors’ decisions but does not account

for preference heterogeneity concerning distance on the hospital side.
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Figure 2. Aggregate Matchings, Aggregate-level Utilities and Social Surpluses.
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Table 5. Preference Parameters, Degree of Polynomials = 3

(1) (2) (3) (4)
University University (IV) Hospital Hospital (IV)

Constant -5.494*** -6.724*** 1.194 1.954**
(0.187) (0.327) (0.776) (0.874)

Salary (million Yen) 0.574*** 2.527*** 0.634*** -1.780**
(0.128) (0.479) (0.146) (0.792)

Tokyo 0.0371 0.112** 0.0251 -0.0940
(0.0376) (0.0461) (0.0618) (0.0712)

urban -0.0307 0.0572* 0.205*** 0.125***
(0.0264) (0.0333) (0.0346) (0.0447)

log(Distance) -0.438*** -0.436*** -0.409*** -0.373***
(0.0150) (0.0121) (0.0194) (0.0217)

log(Previous Match) 1.245*** 1.229*** 1.551*** 1.560***
(0.0305) (0.0231) (0.0411) (0.0463)

log(Beds) 0.744*** 0.814***
(0.0303) (0.0353)

Public university 0.287*** 0.289***
(0.0569) (0.0610)

T-score -1.660** -2.774***
(0.734) (0.810)

N 2847 2627 2847 2627
Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

characteristics in the preference of doctor side: logarithm of number of beds of a hospital,

which acts as the measure of the size and the quality of the hospital, dummy variable of

university hospital, dummy variable of governmental hospital, dummy variable of urban

area, and dummy variable of Tokyo.24 Furthermore, we include the following pairwise

variables: logarithm of distance, logarithm of number of previous matches, and dummy

variable of affiliation relationship. As the characteristics in the preference of hospital

side, in addition to the pairwise variables, we include the following university-specific

variables: dummy variable of public university, T-score of the entrance exam, dummy

variable of urban areas, and dummy variable of Tokyo.
24Tokyo is by far the largest metropolitan area compared to other urban regions and holds a unique

status as the capital, which is why we included a dedicated dummy variable for it.
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Table 6. University Preference Parameters (Unit: Million Yen)
Degree of Polynomials = 3

(1) (2) (3)
Coefficient of Salary = 2.527 2.412 2.519

log(Distance) -0.173∗∗∗ -0.181∗∗∗ -0.173∗∗∗
(0.03) (0.03) (0.03)

log(Previous Match) 0.486∗∗∗ 0.508∗∗∗ 0.487∗∗∗
(0.09) (0.10) (0.09)

Affiliation 0.182∗∗∗ 0.186∗∗ 0.182∗∗
(0.06) (0.06) (0.06)

University Hospital -0.005 -0.001 -0.005
(0.03) (0.03) (0.03)

Governmental Hospital 0.005 0.005 0.005
(0.01) (0.01) (0.01)

log(Beds) 0.322∗∗∗ 0.338∗∗∗ 0.324∗∗∗
(0.06) (0.06) (0.06)

N 2627 2627 2627
Urban × Year

√ √
Tokyo × Year

√

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

The estimation results are shown in Table 5. Columns 1 and 3 correspond to the

case of OLS. Columns 2 and 4 are the results obtained when we use BLP instruments for

salary. The direction of the estimated coefficients of salary is aligned with the expected

signs when we use instruments. We adopt the results obtained using IV estimations as our

main estimation results. Although we cannot reject the null hypothesis that |γ1,U | = |γ1,V |
at the 5% significance level, we use different coefficients in the subsequent counterfactual

analysis rather than assuming these two are equal.25

The distance between the university and the hospital negatively influences both the

preferences of doctors and hospitals, which is aligned with the estimation results of the

first step. Furthermore, as intuitively and anecdotally validated, the previous number of

matches has a strong influence on the preferences. The more previous matches lower the

hurdle to apply for the doctor side, and the uncertainty about quality is cleared from

the hospital’s perspective. The quality measure for both sides is also impactful. From
25The p-value of the test is 0.22.
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Table 7. Hospital Preference Parameters (Unit: Million Yen)
Degree of Polynomials = 3

(1) (2) (3)
Coefficient of Salary = 1.780 1.579 1.810

log(Distance) -0.209∗ -0.236∗ -0.206∗
(0.10) (0.11) (0.10)

log(Previous Match) 0.877∗ 0.989∗ 0.862∗
(0.39) (0.44) (0.38)

Affiliation -1.235∗ -1.383∗ -1.215∗
(0.52) (0.59) (0.50)

Public University 0.163∗ 0.188∗ 0.160∗
(0.08) (0.09) (0.07)

Prestige -1.558∗ -1.764∗ -1.534∗
(0.66) (0.74) (0.64)

N 2627 2627 2627
Urban × Year

√ √
Tokyo × Year

√

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

the doctor’s side, the number of beds in a hospital increases the utility obtained when

matching with a hospital. The hospital prefers doctors from a public university, which

is more competitive to enter. We find positive coefficients for the Tokyo dummy and the

urban dummy on the doctor’s side, and a positive coefficient for the urban dummy on

the hospital’s side. 26

Next, we evaluate the marginal effects in monetary units. For this purpose, we calcu-

late the fractions of the estimated coefficients of the covariates relative to the coefficients

of salary. The fractions and the standard errors for the doctor side are shown in Table

6, and the same ones for the hospital side are shown in Table 7. In both tables, we

present results for three specifications that differ in whether they include interaction

terms between year dummies and the urban and Tokyo dummy variables. The results

remain qualitatively robust across these specifications.

For the doctor side, the estimates tell that the match with a hospital that is 10%

far away decreases the utility by from 0.017 to 0.018 million yen: this is about $108.
26If there is an implicit tax on the prefectures in the urban areas, this coefficient might be underes-

timated. In Appendix D.1, we exploit the tightening regional caps to check this existence and conclude
that the current market does not face such implicit taxation.
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The number of previous matches, the affiliation relationship and the number of beds of

a hospital play the positive influences: 10% increase in the number of previous matches

improves the utility by from 0.049 to 0.051 million yen, which is about $319, the hiring

by affiliated hospitals increases the utility by from 0.182 to 0.184 million yen, which is

about $1, 169, and 10% increase in the number of beds improves the utility by from 0.032

to 0.034 million yen, which is about $210.

For hospital side, distance and the previous number of matches play the similar roles:

the doctors from 10% faraway university decrease the utility of hospital by from 0.021

to 0.024 million yen, which is about $146, and 10% increase in the number of previous

matches improves the utility of hospital by from 0.086 to 0.099 million yes, which is

about from $549 to $632. The indicator of public university also has a positive impact

as expected: the premium of graduating from a public university is from 0.160 to 0.188

million yen, which is about from $1, 022 to $1, 201.

These marginal effects of the covariates are significant even compared to the aggregate-

level utilities. In Appendix D.2, we calculate the ratio of the estimated marginal effects

of the covariates to the aggregate-level utility. For many covariates, a 10% change in

the covariates corresponds to approximately 1–5% of the aggregate-level utility on both

sides.

7 Counterfactual Simulations

7.1 Decomposing the Welfare Loss of Cap-based Policy

We use our empirical estimates to conduct counterfactual simulations designed to evaluate

the current regulatory framework against two alternative policies. This analysis enables

us to quantify the welfare losses associated with the existing cap-based system and to

evaluate the potential benefits of a more efficient, subsidy-based approach. By comparing

these scenarios, we can decompose the sources of inefficiency and distinguish the welfare

cost of the distributional goal itself from the cost of the policy instrument used to achieve

it.

The first policy, Artificial Caps (AC), simulates the status quo implemented by the

Japan Residency Matching Program (JRMP). We compute the aggregate equilibrium

under the set of residency positions that were actually available in the JRMP, subject to
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regional caps.

The second, No Caps (NC), represents an unregulated welfare benchmark. This coun-

terfactual assumes all residency positions are made available at each hospital’s true ca-

pacity. To simulate this policy, we must infer the true capacity of each hospital, as this

is unobservable under the current regulated regime. We define a hospital’s true capacity

as the maximum number of positions it reported to the JRMP between 2015 and 2023.27

The welfare difference between the NC and AC scenarios measures the total efficiency loss

created by the regional cap system.

The third policy, Optimal Subsidy (OS), provides a constrained-optimal benchmark.

In this scenario, we remove all artificial caps and instead introduce subsidies designed to

maximize social surplus subject to regional constraints. These subsidies are set to achieve

a specific distributional goal: ensuring that designated rural prefectures receive at least

as many residents as they did under the AC policy.28 The optimal set of subsidies is then

derived by solving the social surplus maximization problem (P) subject to these regional

floor constraints.29

By construction, the three policies have a clear welfare ranking: the unconstrained

NC policy is first-best, the OS policy is second-best, and the AC policy yields the lowest

surplus. This framework allows for a clear decomposition of the total inefficiency. The

comparison between the OS and AC outcomes isolates the welfare loss attributable to the

choice of regulatory instrument (i.e., caps instead of subsidies). The remaining welfare

difference, observed between the NC and OS outcomes, quantifies the inherent cost of the

distributional goal itself.

Table 8 presents the simulation results for 2017. The findings for other years are qual-

itatively similar and are available in Appendix D.4. Unless otherwise specified, monetary

values are in millions of JPY per month, calculated using the salary coefficients from

specification (1) in Tables 6 and 7. For the OS policy, we report bounds for government

revenue and total welfare, reflecting different possible incidences of taxes and subsidies

between doctors and hospitals.
27This definition provides a conservative estimate of each hospital’s true capacity. As a result, our

calculation of the total welfare loss from the cap system should be interpreted as a lower bound.
28By setting the floor for the number of residents equal to the outcome of the current policy, we adopt a

conservative distributional objective. A more ambitious policy goal with higher floors would necessarily
require a larger total subsidy. Thus, our estimate of the fiscal cost should be interpreted as a lower
bound.

29We define rural prefectures as the 15 prefectures with the lowest physician match rates between 2017
and 2019, calculated as the total matches over the period divided by the sum of reported capacities.
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Table 8. Comparison of Three Policies in 2017

Policy AC (Artificial Caps) NC (No Caps) OS (Optimal Subsidy)

Artificial caps Yes No No
Floor constraints Yes No Yes
Subsidies No No Yes

Match rate 0.868 0.912 0.912
Doctors’ welfare 32795.8 33441.7 33444.5
Hospitals’ welfare 29586.6 31578.1 31579.4
Government’s revenue 0.0 0.0 [−10.5,−7.4]
Social welfare 62382.3 65019.8 [65013.3, 65016.5]
#(subsidized regions) 0 0 3
Average subsidy 0.000 0.000 -0.040
#(constraint violations) 0 3 0

* All welfare and revenue figures are expressed in units of 1 million JPY per month. Government revenue
is positive when taxes are imposed on doctors and hospitals and negative when subsidies are provided.
Doctors’ and hospitals’ welfare are scaled according to specification (1) in Table 6 and Table 7. We
present the bounds of the government’s net revenue, scaled by the coefficients on the doctor side and
the hospital side, respectively. The social welfare is the sum of doctors’ welfare, hospitals’ welfare, and
the government’s revenue. #(constraint violations) counts the number of prefectures violating the lower
bounds (among the 15 rural regions).

Comparing the AC and NC scenarios reveals the direct impact of the caps. Removing

them increases social surplus by approximately 2.6 billion JPY and raises the match rate

by 4.4 percentage points. This welfare gain, however, comes at the expense of three rural

prefectures receiving fewer residents, confirming that the caps are binding and effective

at redirecting physicians, albeit inefficiently.

The OS policy demonstrates that these distributional goals can be met with min-

imal welfare loss. The surplus under OS is substantially higher than under AC and is

nearly identical to the unconstrained NC benchmark. This finding suggests that the vast

majority of the welfare loss from the current policy originates from the choice of regu-

latory instrument—the caps themselves—rather than from the underlying distributional

constraint.

Figure 3 illustrates the prefectural-level welfare differences between the OS and AC

policies. The gains from adopting subsidies are positive for all prefectures and are largest

in urban areas that face the tightest caps under the JRMP. This reinforces the conclusion

that the inefficiency originates primarily from restricting matches in high-demand urban

centers.

Finally, the OS policy appears fiscally practical. The required subsidy to achieve the
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Figure 3. Difference in Welfare between OS and AC by Prefecture

distributional floor is approximately $400 per month for each matched pair in the tar-

geted rural prefectures, which represents 10–20% of a typical resident’s salary. The total

national cost of this subsidy program would not exceed $100,000 per month, suggesting

that a shift to a more efficient subsidy-based policy is feasible.

Changes in matching patterns We compare the equilibrium matching patterns

between AC, NC, and OS. Specifically, we replicate the regression analysis from Sec-

tion 2.2 for every scenario and statistically test whether the coefficients on each covariate

differ significantly. For these tests, we compute standard deviations of the estimates us-

ing cluster-robust standard errors at the unit level: the hospital level for the hospital

perspective and the school level for the school perspective. The results from the hospital

perspective are presented in Table 9, and those from the hospital perspective are shown

in Table 10. In both tables, Panel A compares NC, where regional caps in urban areas are

removed, with AC, which represents the current market equilibrium. Panel B compares

OS, which allows subsidies to meet floor constraints in rural areas, with NC.

We begin by examining Panel A, which captures the changes in matching patterns

that occur when the regional caps in urban areas are removed. According to Table 9,
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Table 9. Coefficient Size Tests for Hospital Side

Panel A: NC vs AC Public Difficulty Distance Unmatch Rate

Urban <∗∗∗ <∗∗∗ >∗∗∗ <∗∗∗

Panel B: OS vs NC Public Difficulty Distance Unmatch Rate

Urban >∗∗∗ >∗∗ <∗∗∗ >∗∗∗

* Each cell compares coefficients across the two regimes indicated in the panel
header. “>” (resp. “<”) means the coefficient is larger (resp. smaller) under the
first regime. Significance: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10 (two-sided test).

Table 10. Coefficient Size Tests for School Side

Panel A: NC vs AC Urban Hosp. Distance Unmatch Rate

Public University < < <
Difficulty < < <

Panel B: OS vs NC Urban Hosp. Distance Unmatch Rate

Public University > < <
Difficulty >∗ < >

* Each cell compares coefficients across the two regimes indicated in the
panel header. “>” (resp. “<”) means the coefficient is larger (resp. smaller)
under the first regime. Significance: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
(two-sided test).

the newly available slots in urban hospitals are filled primarily by graduates from private

universities, particularly those with lower entrance difficulty and located in more distant

regions. While the unmatch rate in urban areas is already low, it decreases even further

under the NC policy. From the school perspective shown in Table 10, although the

differences are not statistically significant, the first row displays a pattern consistent with

this observation. The negative correlation between distance and both public status and

difficulty also suggests that public universities, especially those located in rural areas,

have become even more prominent sources of residents for rural hospitals under this

scenario.

Next, we turn to Panel B, which illustrates changes in matching patterns resulting

from the introduction of subsidies in rural areas. As shown in Table 9, the changes in

matching patterns from NC to OS (Panel B) are the exact opposite of those from AC to NC

(Panel A) across all variables. This suggests that the subsidy effectively counteracts the

influx of students into urban areas resulting from the removal of regional caps, encouraging

them to remain in rural areas instead. The results from the school perspective in Table 10
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are also consistent with this interpretation.

These changes in matching patterns help explain why the optimal subsidy required in

our analysis is relatively small. The subsidy’s primary role is to retain students from rural

universities who would otherwise move to urban hospitals after the removal of regional

caps. Because distance is a significant factor in student preferences, matching with a local

hospital is not a prohibitively costly alternative for these students. Therefore, a modest

subsidy is sufficient to persuade enough students to choose a local hospital, thereby

meeting the distributional goal at a low fiscal cost.

7.2 Inherent Inefficiency of Caps: An Evaluation of the Flexible

DA Algorithm

To further assess the limitations of cap-based regulations, we conduct a second set of

counterfactual simulations evaluating a state-of-the-art matching algorithm from the lit-

erature. The Flexible Deferred Acceptance (FDA) algorithm, a variant of the standard DA

algorithm, adjusts hospital capacities to meet regional constraints dynamically, rather

than relying on the pre-determined, fixed capacity reductions imposed by the current

JRMP protocol. To distinguish whether the inefficiency of the current policy stems from

a naive implementation or an inherent limitation of caps, this exercise compares the out-

comes of the FDA algorithm with the three policies considered previously: Artificial Caps

(AC), No Caps (NC), and Optimal Subsidy (OS).

This simulation exercise more closely mimics the institutional details of the JRMP.

We generate individual-level preferences from which agents construct preference rankings,

and then use a centralized algorithm to determine the final matches. Unlike the previous

analysis, this approach computes individual-level outcomes without relying on the large-

market approximation, and it determines matches using the DA algorithm rather than

as a transferable-utility stable outcome. This allows us to check the robustness of our

baseline findings from Section 7.1.

For the AC policy, we first estimate the aggregate-level utilities by solving the optim-

ization problem (P) under the actual JRMP caps. We then generate individual doctor

and hospital utilities by adding a random logit error to these aggregate utilities. Based on

the resulting individual preferences, we construct preference lists and run the standard

DA algorithm to determine the final matching under the JRMP caps. The NC policy
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simulation is analogous, except that we use each hospital’s true capacity to compute the

aggregate-level utilities.

For the OS policy, we set floor constraints requiring each designated rural prefecture

to receive at least as many residents as it did under the AC policy. We then solve

the optimization problem (P) to compute the optimal subsidy and the corresponding

aggregate-level utilities. Individual preferences are generated from these utilities, and

the standard DA algorithm determines the match outcome.

Finally, for the FDA policy, individual utilities are identical to those in the AC scen-

ario.30 The matching is then determined by the FDA algorithm, which operates under

regional caps calibrated to satisfy the floor constraints as in the OS scenario. The floor

constraints requires each rural prefecture to receive at least as many residents as the

number of matches under DA in the AC scenario.31

Table 11 reports the simulation results. Under the FDA policy, capacities in non-rural

areas are reduced by 30% to achieve the floor constraints. Despite this substantial reduc-

tion, the FDA algorithm improves upon the current AC policy, increasing the total match

rate by 0.9 percentage points and yielding higher total welfare. However, the welfare un-

der FDA remains significantly lower than that under the unconstrained NC benchmark.

In contrast, the OS policy achieves a total welfare level nearly identical to that of the NC

policy. This result strengthens our earlier conclusion that a fundamental inefficiency is in-

herent in cap-based policies, at least in this application, and that monetary interventions

offer a powerful alternative.

Furthermore, the results for the AC, NC, and OS policies are consistent with the

findings in Section 7.1. Social welfare increases when the artificial caps are removed (NC

vs. AC), and the OS policy nearly restores the first-best welfare level. This consistency

across different simulation methodologies validates our baseline approach and reinforces

the central findings of our analysis.
30Since hospital capacities are computed during the execution of the FDA algorithm, no definitive

method exists for calculating the aggregate-level utilities prior to running the algorithm. We therefore
use the utilities from the AC scenario.

31Specifically, a regional cap is initially set for each non-rural prefecture equal to the sum of the true
capacities of the hospitals within it. We then find the smallest α such that if the regional caps of all
prefectures are reduced uniformly by α%, the final matching produced by the FDA algorithm satisfies
the floor constraints.
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Table 11. Welfare Comparison of the Simulated Matchings in 2017

Scenario AC NC OS FDA

Algorithm DA DA DA FDA
Artificial Caps Yes No No No
Floor Constraints Yes No Yes Yes
Subsidies No No Yes No

Match rate 0.762 0.810 0.810 0.771
Doctors’ welfare 35850.2 37176.3 37192.4 35979.4
Hospitals’ welfare 29748.7 29174.1 29176.6 29643.0
Government’s revenue 0.0 0.0 [−17.0,−12.0] 0.0
Social welfare 65598.9 66350.5 [66352.1, 66357.1] 65622.4

#regions violating lower bounds 0 4 3 0
#doctors required to meet lower bounds 0 15 12 0

#doctors matched with urban hospitals 3103 3196 3192 3016
#doctors matched with rural hospitals 1071 1170 1175 1209
Urban hospitals’ welfare 6143.2 5758.4 5753.2 5954.1
Rural hospitals’ welfare 2281.8 2227.0 2243.8 2447.8

* All welfare and revenue figures are expressed in units of 1 million JPY per month. Government revenue
is positive when taxes are imposed on doctors and hospitals, and negative when subsidies are provided.
Doctors’ and hospitals’ welfare are scaled according to specification (1) in Table 6 and Table 7. We
present the bounds of the government’s net revenue, scaled by the coefficients on the doctor side and
the hospital side, respectively. The social welfare is the sum of doctors’ welfare, hospitals’ welfare, and
the government’s revenue. “#regions violating lower bounds” indicates the number of prefectures whose
matched doctor count is less than that of AC. “#doctors required to meet lower bounds” indicates how
many additional doctors must be matched with rural hospitals so that these prefectures exceed the
matched doctor count in AC.
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8 Conclusion

This study develops and implements a framework to evaluate the efficiency of regulations

in matching markets with distributional disparities, focusing on the trade-offs between

cap-based policies and monetary interventions. We build a transferable utility (TU)

matching model that incorporates regional constraints, such as caps and floors, on the

number of matches. By embedding this model within the aggregate matching framework

of Galichon and Salanié (2021a), we provide a method to identify preference structures

and conduct policy simulations using only aggregate-level matching data and an observ-

able measure of transfers, such as salary.

Applying this framework to the Japan Residency Matching Program (JRMP), our

empirical analysis reveals several key findings. First, the estimation results show that

preferences are horizontally differentiated on both sides of the market; factors such as

geographic distance and the history of previous matches are significant determinants

of preferences for both doctors and hospitals. Second, our counterfactual simulations

demonstrate that the current cap-based regulations, while redirecting some physicians

to underserved areas, generate substantial welfare losses. We find that a small, targeted

subsidy policy can achieve the same distributional outcome as the existing caps but at a

significantly higher level of social welfare. This indicates that the inefficiency stems not

from the distributional goal itself, but from the choice of regulatory instrument. Finally,

we demonstrate that even a more sophisticated, flexible Deferred Acceptance mechanism

still yields considerable welfare losses compared to the optimal subsidy, underscoring the

inherent limitations of employing quantity restrictions in this context.

The findings offer important policy implications. For markets like the JRMP, where

geographic imbalances are a primary concern, monetary interventions appear to be a

more efficient and fiscally practical tool than rigid caps. Our framework offers a practical

path to designing such interventions, as its reliance on aggregate-level matching data and

salaries is less demanding than approaches that require individual-level preference data.

More broadly, the approach developed in this paper can be applied to other matching

markets where transfers are present but granular data are scarce. Future research could

extend this approach to analyze more complex distributional constraints or explore the

long-run effects of such policies on physician career paths and settlement patterns.
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A Omitted Proofs

A.1 Supporting Stable Outcomes as an Equilibrium

In this section, we show that any stable outcome (Definition 1) can be supported as an

equilibrium of a stylized game that mirrors the JRMP’s matching process. For expository

simplicity, we assume that taxation policy is inactive, i.e., wz ≡ 0.32

The game consists of three periods. In Period 1, each slot simultaneously announces a

profile of transfers t = (tij)i,j, where tj = (tij)i is the transfer profile chosen by slot j. In

Period 2, observing all the wage offers, doctors and slots submit their preference lists. In

Period 3, the doctor-proposing deferred acceptance (DA) algorithm determines the final

matching. The utility of doctor i being matched with a slot j is defined as follows: the

base utility, which is the utility felt by i net of transfer, is denoted by Uij. Given transfer

offer t, when matched with slot j, doctor i’s payoff is Uij + tij. Similarly, the base utility

of slot j when matched with doctor i is denoted by Vij, and the payoff of j when matched

with i given w is Vij − tij. Note that Φij = Uij + Vij. We refer to this game as the JRMP

game.

We assume that all agents submit the preference ranking truthfully given t in Period

2.33 Given this assumption, the analysis of this game boils down to that of one-shot game

played by the slots in Period 1.

The following proposition establishes the link between the stable outcome and the

equilibrium of this game.

Proposition A.1. For any stable outcome (d∗, u∗, v∗) of the matching market (I, J,Φ),

there exists a Nash equilibrium of the JRMP game that results in the matching d∗ and

payoffs (u∗, v∗).

Proof. Consider the following transfer offer profile:

t∗ij :=

u
∗
i − Uij (d∗ij = 1)

Mij (o.w.)
,

where Mij is sufficiently low to be unattractive, i.e., Mij < u∗i − Uij.
32If not, we can consider Φij below as the gross joint surplus for any given w.
33Since the DA algorithm is strategy-proof for the proposing side, this means that we assume the

truthful report from the other side. This is a common assumption when studying DA algorithms.
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Suppose that this transfer profile t∗ is chosen in Period 1. If doctor i is matched with

some slot j under the stable outcome (i.e, d∗ij = 1), then the preference list submitted by

doctor i is34

i : j ≻ ∅ ≻ · · · .

Since d∗ij = 1, in the slot j’s preference list, doctor i is placed above the outside option.

Therefore, doctor i is not rejected in the first round of the doctor-proposing DA algorithm.

If doctor i is unmatched under the stable outcome, he lists the outside option at the top

of his preference list, and proposes to no slot in all rounds. Since no rejection occurs, the

algorithm terminates in the first round, yielding the matching d∗. By construction of t∗,

each agent enjoys the same payoff as in the stable outcome.

We now verify that no hospital has a profitable unilateral deviation in Period 1.

Suppose toward contradiction that there exists slot j that can be strictly better off by

matching with i′ by setting (t̃ij)i, where d∗i′j = 0. For this to be a successful and profitable

deviation, two conditions must be met:

v∗j < Vi′j − t̃i′j,

u∗i′ ≤ Ui′j + t̃i′j.

This implies that

v∗j + u∗i′ < Φi′j,

which violates the stability of (d∗, u∗, v∗). A contradiction.

A.2 Results for Section 4.1

Below, without loss of generality, we normalize the outside option values to zero, i.e.,

Φi,j0 = Φi0,j ≡ 0 for all i ∈ I and j ∈ J .35 The goal of this subsection is to prove the

following result:

Theorem A.1. Fix any market (I, J, Z, z,Φ) and regional constraints (oz, ōz)z. There

exists taxation policy w∗ such that the matching under the stable outcome under w∗ is d∗.
34If there is a tie between slot j and the outside option, the tie-breaking rule does not matter because

it won’t affect the equilibrium payoff. For simplicity, I assume that doctor i always places slot j at the
top.

35This is possible because the optimal solution to (P0) remains the same when we redefine Φij as
Φij − Φi,j0 − Φi0,j and ignore the terms in the objective function that are independent of d.
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We first define an auxiliary problem in which we relax the integral constraint with

respect to d so that dij can take any nonnegative real value:

(P′
0)



max
d≥0

∑
i,j

Φijdij

s.t.
∑

j dij ≤ 1 (i ∈ I)∑
i dij ≤ 1 (j ∈ J)∑

j∈z
∑

i dij ≤ ōz (z ∈ Z)∑
j∈z
∑

i dij ≥ oz (z ∈ Z)

For (P′
0) to be useful, it must yield a matching, or an integer solution. This is known to

be the case without regional constraints. The following proposition states that it remains

true even with regional constraints.

Proposition A.2. Fix any matching market (I, J, Z, z,Φ) and regional constraints (oz, ōz)z.

Assume that (P′
0) has at least one feasible solution. Then, (P′

0) has an integer optimal

solution.

Proof of Proposition A.2

Our proof utilizes the known results regarding total unimodularity:

Definition 2 (Total unimodularity). Let A be an integer matrix. A is totally unimodular

if any minor principal is either -1, 0, or 1.

First, we show the following lemma:

Lemma A.1. The matrix that represents the set of constraints of (P′′) is totally unim-

odular.

Our proof of Lemma A.1 relies on the following fact about the total unimodularity.

Lemma A.2 (Ghouila-Houri (1962)). An m× n integer matrix A is totally unimodular

iff for each subset of rows R ⊆ [m], there exists a partition R1 and R2 of R such that

∀k ∈ [n],
∑
i∈R1

aik −
∑
i∈R2

aik ∈ {−1, 0, 1}
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Proof of Lemma A.1. First, observe that the feasibility constraints (i.e., all the con-

straints except x ≥ 0) of an instance of TU matching with regional constraints can

be represented by (|I|+ |J |+2|Z|)× (|I|×|J |) matrix A (see also Example 2) such that

• Each row corresponds to either (1) agent i ∈ I, (2) agent j ∈ J , (3) an upper bound

ōz for region z ∈ Z, or (4) a lower bound oz for region z ∈ Z.

• Each column corresponds to an (i, j) ∈ I × J pair.

• The component of row i ∈ I is 1 for column (i, j′) for any j′ ∈ J ; the component is

0 otherwise.

• The component of row j ∈ J is 1 for column (i′, j) for any i′ ∈ I; the component is

0 otherwise.

• Each region z has two corresponding rows: one is for upper bound z̄ and another

one is for lower bound z.

– The component of row z̄ is 1 for column (i, j) such that z(j) = z; the compon-

ent is 0 otherwise.

– The component of row z is −1 for column (i, j) such that z(j) = z; the

component is 0 otherwise.

We apply Lemma A.2 to prove that A is totally unimodular. Fix any subsets of rows

R. Let IR ⊆ I be the rows corresponding to i ∈ I contained in R. JR, Z̄R, and ZR are

defined analogously.

We classify the rows in R by the following algorithm:

1. Let R1 := Z̄R and R2 := ∅.

2. For each z ∈ ZR, if z ∈ Z̄R, then update R1 ← R1 ∪ {z}; otherwise, update

R2 ← R2 ∪ {z}.

3. Let JR := {j(1), . . . , j(TJ)}, where TJ := |JR|, R1(1) := R1, and R2(1) := R2. For

each t ∈ [TJ ],

(a) Define a row vector

r(t) :=

 ∑
i∈R1(t)

aik −
∑

i∈R2(t)

aik


k

.

(b) If r(t)i,j(t) = 1 for some i, then R1(t+1) := R1(t) and R2(t+1) := R2(t)∪{j(t)}.
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(c) Otherwise, R1(t+ 1) := R1(t) ∪ {j(t)} and R2(t+ 1) := R2(t).

4. Let R1 := R1(TJ) and R2 := R2(TJ) ∪ IR. Return R1 and R2.

We will show why the algorithm above works. First, under the hierarchical regional

constraints, each component of r(1) is either 0 or 1. Next, let

r :=

 ∑
i∈R1(TJ )

aik −
∑

i∈R2(TJ )

aik


k

.

Note that, under the regional constraints, if z(j) = z and aj,k = 1, then az̄,k = 1 and

az,k = −1. Thus, by the construction of Step 4, all the components of r(t) are either 0

or 1 for each t. Lastly, by construction, for any column k,
∑

i∈IR aik ∈ {0, 1}. Therefore,

we have

∀k ∈ [n],
∑
i∈R1

aik −
∑
i∈R2

aik ∈ {−1, 0, 1}.

By Lemma A.2, this implies that A is totally unimodular.

By the following well-known result, we can conclude that (P′
0) has an integer optimal

solution:

Lemma A.3 (Hoffman and Kruskal (2010)). A is totally unimodular iff, for any b ∈ Zm,

P := {x ∈ Rn : Ax ≤ b, x ≥ 0} is an integral polyhedra, i.e., all the faces includes an

integer vector. If P is bounded, this is equivalent to that the components of all vertices of

P are integers.

This completes the proof of Proposition A.2.

Example 2 (TU matching with regional constraints). Let I := {i1, i2}, J := {j1, j2, j3},
Z := {z1, z2}, z(j1) = z(j2) = z1, and z(j3) = z2. The set of constraints can be written
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as A0x ≤ b by defining A0, x, and b as follows:

A0 :=



(i1,j1) (i1,j2) (i1,j3) (i2,j1) (i2,j2) (i2,j3)

i1 1 1 1 0 0 0

i2 0 0 0 1 1 1

j1 1 0 0 1 0 0

j2 0 1 0 0 1 0

j3 0 0 1 0 0 1

z̄1 1 1 0 1 1 0

z̄2 0 0 1 0 0 1

z1 −1 −1 0 −1 −1 0

z2 0 0 −1 0 0 −1
(i1,j1) −1
(i1,j2) −1
(i1,j3) −1
(i2,j1) −1
(i2,j2) −1
(i2,j3) −1


x := (xi1j1 , xi1j2 , xi1j3 ;xi2j1 , xi2j2 , xi2j3)

⊤

b := (1, 1, 1, 1, 1, ōz1 , ōz2 , oz1 , oz2 , 0, 0, 0, 0, 0, 0)
⊤

The last |I|× |J | rows corresponds to non-negativity constraints dij ≥ 0. Note that [B I]

is totally unimodular if B is totally unimodular. Thus, to show A0 is totally unimodular,
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it suffices to show that

A :=



(i1,j1) (i1,j2) (i1,j3) (i2,j1) (i2,j2) (i2,j3)

i1 1 1 1 0 0 0

i2 0 0 0 1 1 1

j1 1 0 0 1 0 0

j2 0 1 0 0 1 0

j3 0 0 1 0 0 1

z̄1 1 1 0 1 1 0

z̄2 0 0 1 0 0 1

z1 −1 −1 0 −1 −1 0

z2 0 0 −1 0 0 −1


is totally unimodular.

Proof of Theorem A.1

Consider the following dual problem of (P′
0):

(D′
0)

 max
u,v,w̄,w≥0

∑
i

ui +
∑
j

vj +
∑
z∈Z

ōzw̄z −
∑
z∈ZL

ozwz

s.t. ui + vj ≥ Φij − w̄z(j) + wz(j) (i ∈ I, j ∈ J)

Let d∗ be an integer optimal solution to (P0
′) (NB: this d∗ is also the optimal solution

to (P0)) and let (u, v, w̄, w) be a solution to (D′
0). By a similar argument as in the

standatd TU matching model that characterizes an stable outcome as a solution to the

social welfare maximization problem and its dual problem, we can show that (d∗, (u, v))

is a stable outcome given Φ and w∗, where w∗
z := w̄z1{w̄z > 0}−wz1{wz > 0}. Note that

w̄z > 0 and wz > 0 cannot happen simultaneously due to the complementary slackness

condition.

Corollary A.1. Fix any cap-based policy characterized by J ′ ⊆ J such that the resulting

matching satisfies the regional constraints. The social welfare achieved under this policy

is weakly less than the welfare attained under the optimal taxation policy w∗.

Proof. Fix any J ′. The social welfare with J ′ cannot be better than the optimal value of
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(P0)) with additional constraints dij = 0 for any i ∈ I and j ∈ J ′.

A.3 Proof of Lemma 1

First, we will show the following lemma: 36

Lemma A.4. Suppose that U and V are aggregate-level utilities given (u, v) (i.e., (1)

holds). Suppose that (d, (u, v)) is a stable outcome. Then, we have Uxy+Vxy ≥ Φxy+wz(y)

with equality when µxy > 0 for each (x, y) ∈ T .

Proof. Fix any (x, y) ∈ T . First, we show Φxy −wz(y) ≤ Uxy + Vxy. Suppose that i ∈ x is

matched with hospital j ∈ y. We have

ui = max
j∈J
{Φ̃ij − vj}

= max
y∈Y

max
j∈Y
{Φij − wz(y) − vj}

= max
y∈Y

max
j∈Y
{Φxy − wz(y) + εiy + ηxj − vj}

= max
y∈Y
{Φxy − wz(y) + εiy +max

j∈y
{ηxj − vj}}

= max
y∈Y
{Φxy − wz(y) + εiy − Vxy}

Thus, for any i ∈ x, we have

ui = max

{
max
y∈Y
{Φxy − wz(y) + εiy − Vxy}, εi,y0

}
= max

y∈Y0

{Φxy − wz(y) + εiy − Vxy}.

Hence,

Φxy − wz(y) ≤ ui − εiy + Vxy.

By taking the infimum over i ∈ x, we have

Φxy − wz(y) ≤ Uxy + Vxy,

for each x ∈ X and y ∈ Y .
36The following proof of Lemma A.4 is almost identical to the proof of Proposition 1 of Galichon and

Salanié (2021a).
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Next, suppose that µxy > 0. This implies that there exist i ∈ x and j ∈ y such that

dij = 1. For this pair, we have ui + vj = Φij − wz(y). Suppose toward contradiction

that Uxy + Vxy > Φxy. By (1), we have Φxy − wz(y) < ui − εiy + vj − ηxj, and thus

Φij − wz(y) < ui + vj. A contradiction.

Proof of Lemma 1. Fix any type x ∈ X and doctor i ∈ x. By definition of Uxy, we have

Uxy ≤ ui − εiy, ∀y ∈ Y0
⇐⇒ ui ≥ Uxy + εiy, ∀y ∈ Y0
⇐⇒ ui ≥ max

y∈Y0

{Uxy + εiy}.

Similarly, for any type y ∈ Y and doctor j ∈ J with type y, we have vj ≥ maxx∈X0{Vxy +
ηxj}.

We want to claim that ui ≤ maxy∈Y0{Uxy + εiy}. Suppose toward contradiction that

there exists type x ∈ X and doctor i ∈ x such that

ui > max
y∈Y0

{Uxy + εiy}.

First, consider the case where i is matched with some hospital j ∈ y. Then

Φij − wz(y) = ui + vj

>
(
max
y′∈Y0

Uxy′ + εiy′
)
+
(
max
x′∈X0

Vx′y + ηx′j

)
≥ Uxy(j) + εiy(j) + Vxy(j) + ηxj

≥ Φxy − wz(y) + εiy(j) + ηxj (∵ Lemma A.4)

= Φij − wz(y).

A contradiction. Next, consider the case where i is unmatched. Then

ui = Φi,y0 = εi,y0 > max
y∈Y0

{Uxy + εiy} ≥ εi,y0 .

A contradiction. Therefore, we have ui ≤ maxy∈Y0{Uxy+εiy} and hence ui = maxy∈Y0{Uxy+

εiy}. We can show vj = maxx∈X0{Vxy + ηxj} in a similar manner.
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A.4 Proof of Theorem 1

First, we show the strict concavity of G and H.

Lemma A.5. Under Assumptions 1-4, G and H are strictly increasing and strictly con-

vex.

Proof. G is strictly increasing. Take any U1, U2 ∈ RN×M such that U1 ≥ U2 and U1 ̸=
U2. Then G(U1) ≥ G(U2) by definition. In addition, note that U1

xy > U2
xy holds for some

x ∈ X and y ∈ Y . Since Px has full support, we have

Prεi(ui = U1
xy + εiy) ≥ Prεi(ui = U2

xy + εiy) > 0.

Because Eεi [ui | ui = Uxy + εiy] is strictly increasing in Uxy, we have

Eεi

[
ui | ui = U1

xy + εiy
]
· Prεi(ui = U1

xy + εiy)

> Eεi

[
ui | ui = U2

xy + εiy
]
· Prηj(ui = U2

xy + εiy),

and thus G(U1) > G(U2) holds.

G is strictly convex. Take any U1, U2 ∈ RN×M and s ∈ [0, 1]. Since

sG(U1) + (1− s)G(U2)

=
∑
x

nxE
[(

max
y

s(U1
xy + εiy)

)
+
(
max

y
(1− s)(U2

xy + εiy)
)]

(6)

≥
∑
x

nxE
[
max

y
sU1

xy + (1− s)U2
xy + εiy

]
(7)

= G
(
sU1 + (1− s)U2

)
holds, G is a convex function.

Now suppose U1 ̸= U2. Then U1
xy ̸= U2

xy holds for some x ∈ X, y ∈ Y . Without loss

of generality, assume U1
xy > U2

xy. Since Px is of full support,

Pr

({
εi : U

1
xy + εiy > max

y′ ̸=y
U1
xy′ + εiy′ ∧ max

y′ ̸=y
U2
xy′ + εiy′ > U2

xy + εiy

})
> 0
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holds. This implies that

(
max

y
s(U1

xy + εiy)
)
+
(
max

y
(1− s)(U2

xy + εiy)
)
> max

y
sU1

xy + (1− s)U2
xy + εiy

occurs with strictly positive probability, and thus (6) > (7) holds. Therefore, for any

s ∈ (0, 1), we have

sG(U1) + (1− s)G(U2) > G
(
sU1 + (1− s)U2

)
,

which implies G is strictly convex. Similarly, we can show H is also strictly increasing

and strictly convex.

We will show the following, which corresponds to the first part of the theorem:

Lemma A.6. If G and H are strictly convex and differentiable,37 (P) and (D) have

unique solutions for any Φ.

Proof. For (P), since G and H are differentiable (WDZ theorem), G∗ and H∗ are strictly

convex (Proposition D.14 of Galichon (2018)). Therefore, the objective function of (P)

is strictly concave in µ, which implies the uniqueness of the solution.

For (D), suppose toward a contradiction that there are two different optimal solutions

α := (U, V, w̄, w) and β := (U ′, V ′, w̄′, w′). Note that γ := 1
2
(α + β) is also feasible. If

either U ̸= U ′ or V ̸= V ′, then γ gives a strictly lower value due to the strict convexity

of G and H, which contradicts the optimality of α and β.

Suppose that U = U and V = V ′. We must have (w̄, w) ̸= (w̄′, w′). Since G is strictly

convex, we have ∂G
∂Uxy

> 0 for each (x, y). By the complementary slackness condition with

respect to Uxy, we have Uxy+Vxy = Φxy+ w̄z(y)−wz(y) and U ′
xy+V

′
xy = Φxy+ w̄

′
z(y)−w′

z(y)

for each (x, y). Since U = U ′ and V = V ′, this implies that

w̄z − wz = w̄′
z − w′

z. (8)

for each z. Since ōz > oz, we must have w̄zwz = 0; otherwise, there exists ε > 0 such

that (U, V, ˜̄w, w̃), where ˜̄wz := w̄z − ε and w̃z := wz − ε attains a strictly lower value.

Similarly, we have w̄′
zw

′
z = 0. However, these combined with (8) imply that w̄ = w̄′ and

37This holds under Assumptions 1-4.

55



w = w′: if w̄z > 0, then wz = 0, w′
z = 0, and w̄z = w̄′

z. If wz > 0, then w̄z = 0, w̄′
z = 0,

and wz = w′
z. If w̄z = wz = 0, then w̄′

z = w′
z = 0. A contradiction.

By the complementary slackness condition, for each z, only one of the following holds:

w̄∗
z > 0 and w∗

z = 0, w̄∗
z = 0 and w∗

z > 0, or w̄∗
z = w∗

z = 0. If we define

w∗
z := 1{w̄∗

z > 0}w̄∗
z − 1{w∗

z > 0}w∗
z,

then w∗ = (w∗
z)z is the taxation policy, and we have

Φxy − w̄∗
z(y) + w∗

z(y) = Φxy − w∗
z(y),

which corresponds to the stability condition with the gross surplus under taxation policy

w∗. Thus, the primal and dual problems jointly compute the equilibrium matching and

corresponding social welfare under the taxation policy w∗. The triple (µ∗, U∗, V ∗) then

constitutes the corresponding aggregate-level matching and utilities.

A.5 Derivation of two-way fixed effects Poisson regression of Ga-

lichon and Salanié (2021b)

We derive the estimator based on two-way fixed effects Poisson regression, which is pro-

posed in Galichon and Salanié (2021b). The derivation is for the estimation of Φ and

the same argument can be applied to the estimation of aggregate level utility, U and V ,

which is transformed into a single-side fixed effect Poisson regression.

Consider a Poisson regression with two-way FE. The observation is matching between

type x and y: µxy. We assume that µxy ∼ Po(θxy) where θxy = e
∑

k λkϕkxy−ux−vy

2 , µx0 ∼
Po(e−ux), and µ0y ∼ Po(e−vy).

The likelihood is as follows: note that we double-count the matchings when we con-

struct the likelihood.

∏
xy

eµxy

∑
k λkϕkxy−ux−vy

2 e−e

∑
k λkϕkxy−ux−vy

2

µxy!

∏
xy

eµxy

∑
k λkϕkxy−ux−vy

2 e−e

∑
k λkϕkxy−ux−vy

2

µxy!∏
x

eµx0uxe−e−ux

µx0!

∏
y

eµ0yvye−e−vy

µ0y!
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Then the log-likelihood function is written as follows:

G(λ, u, v) ≡ 2
∑
xy

ln eµxy

∑
k λkϕkxy−ux−vy

2 e−e

∑
k λkϕkxy−ux−vy

2 +
∑
x

ln e−µx0uxe−e−ux
+
∑
y

ln e−µ0yvye−e−vy

= 2
∑
xy

µxy

∑
k λkϕ

k
xy − ux − vy
2

− e
∑

k λkϕkxy−ux−vy

2 +
∑
x

−µx0ux − e−ux +
∑
y

−µ0yvy − e−vy

=
∑
xy

µxy

(∑
k

λkϕ
k
xy − ux − vy

)
− 2e

∑
k λkϕkxy−ux−vy

2

−
∑
x

µx0ux −
∑
x

e−ux −
∑
y

µ0yvy −
∑
y

e−vy

The minimization objective function is

F (λ, u, v) =
∑
x

e−ux +
∑
y

e−vy + 2
∑
xy

e

∑
k λkϕkxy−ux−vy

2 −
∑
xy

µxy

(∑
k

λkϕ
k
xy − ux − vy

)
+
∑
x

µx0ux +
∑
y

µ0yvy

As shown in Galichon and Salanié (2021b), minimizing F is equivalent to the moment

matching estimator.

B Comparison between Aggregate Equilibria, Stable

Outcomes, and Deferred Acceptance Outcomes

In this section, we clarify the relationships among aggregate equilibrium (AE), stable

outcome, and the outcome under the Deferred Acceptance (DA) mechanism. In our

model, agents face nonzero outside options: doctor i obtains utility εi0 when unmatched,

and slot j obtains utility η0j when unmatched.

By construction, the social welfare achieved under the DA mechanism is lower than

that under the stable outcome. Furthermore, we demonstrate that, in a suitably defined

large market limit, the per-capita social welfare under the stable outcome and AE con-

verges. These results are established through both theoretical analysis (Section B.1) and

simulation (Section B.2).
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B.1 Theory

Below, we claim that social welfare per capita (i.e., total surplus divided by the number of

doctors and positions) under the stable outcome almost surely converges to the (modified

version of) optimal value of AE. For notational simplicity, we assume wz ≡ 0 below. For

general taxation policy z, the same argument goes through with Φij being replaced by

the gross surplus.

Let L := |I| + |J |. We consider the large market limit in which nx and my tends to

∞ for all x, y with

nx

L
→ px,

my

L
→ py (nx,my →∞). (9)

Let (ui)i, (vj)j denote the equilibrium payoff profiles under the stable outcome with

non-zero-valued outside option values, which is the solution to the following dual problem

(DS):

(DS)



min
u,v

∑
i∈I

ui +
∑
j∈J

vj

s.t. ui + vj ≥ Φij

ui ≥ εi0

vj ≥ η0j

The corresponding primal problem PS is

(PS)

max
µ

∑
ij∈IJ

µij (Φij − εi0 − η0j) +
∑
i∈I

εi0 +
∑
j∈J

η0j

s.t. µ is feasible

Observe that the value of the objective function of (PS) corresponds to social welfare

under the stable outcome with non-zero-valued outside options since (u, v) satisfies the

corresponding stability condition (the constraints in (DS)) and

∑
ij∈IJ

µij (Φij − εi0 − η0j) +
∑
i∈I

εi0 +
∑
j∈J

η0j

=
∑
ij∈IJ

µijΦij +
∑
i∈I

(
1−

∑
j

µij

)
εi0 +

∑
j∈J

(
1−

∑
i

µij

)
η0j,
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which means that the matched pair with µij = 1 yields joint surplus Φij and the un-

matched agents yields surplus εi0 or η0j.

We consider a version of the dual for AE:

V̄ (AE) := min
U,V

{∑
x∈X

pxE
[
max
y∈Y0

{Uxy + εiy}
]
+
∑
y∈Y

qyE
[
max
y∈Y0

{Vxy + εxj}
]}

. (10)

Note that the weights px and qy are used instead of nx and my in the current main text.

The social welfare per capita under the stable outcome with non-zero-valued outside

options is denoted by

V̄ (S) :=
1

L

[∑
x∈X

∑
i∈x

ui +
∑
y∈Y

∑
j∈y

vj

]

=
∑
x∈X

nx

L

1

nx

∑
i∈x

ui +
∑
y∈Y

my

L

1

my

∑
j∈y

vj.

By Lemma 1, for any i ∈ x and j ∈ y, we have

ui = max
y∈Y0

{Uxy + εiy} , vj = max
x∈X0

{Vxy + εxj} . (11)

By the SLLN and (11), we have

1

nx

∑
i∈x

ui → E
[
max
y∈Y0

{Uxy + εiy}
]
, a.s. (nx →∞),

and
1

my

∑
j∈y

vj → E
[
max
y∈Y0

{Vxy + εxj}
]
, a.s. (my →∞).

By (9), we have

V̄ (S)→ V̄ (AE), a.s. (nx,my →∞).

We compute (DS) for the stable outcome in our simulation, and compare its social

welfare per capita (i.e., the optimal value of (DS) divided by L) with the social welfare

per capita in AE computed by (10).
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B.2 Simulation

We consider a matching market with four medical schools, denoted byX = {x1, x2, x3, x4},
and three hospitals, denoted by Y = {y1, y2, y3}. Each medical school admits n students,

and each hospital offers m available slots. The aggregate-level joint surplus generated by

a match between a university x and a hospital y is given by the following matrix:

(Φxy)xy =


5 3 2

0 4 1

4 2 3

−1 2 2

 .

Given the matrix (Φxy)xy and the population of doctors and hospital slots, we first

compute the AE for this market. This computation yields the number of matches across

all types as well as the aggregate-level utilities Uxy and Vxy. In addition, we obtain the

welfare measures G and H for both sides.

At the individual level, the utility for a doctor i of type x and for a slot j of type y

is given by

Uxy + εiy and Vxy + ηxj,

respectively. Summing these, we define the individual-level social surplus as

Φij = Uxy + εiy + Vxy + ηxj.

Note that this individual-level utility is defined only for doctor–slot pairs; in cases of

unmatch, a doctor i obtains utility εi0 and a slot j obtains utility η0j. We assume all

unobserved terms (εiy)y∈Y0 and (ηxj)x∈X0 follow a Gumbel distribution.

Using these simulated values of utility and surplus, we compute two types of market

outcomes: the stable outcome and the outcome from the deferred acceptance algorithm.

For the stable outcome, we solve (DS) to obtain the equilibrium. For the DA outcome,

we first construct preference lists based on the computed utilities and then implement

the standard DA algorithm to determine the matching.
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Figure 4. AE and individual market outcomes

Note: The upper panels present the welfare measures. The leftmost panel compares the average
welfare on the doctors’ side, the center panel compares the average welfare on the hospitals’ side,
and the rightmost panel compares the total social welfare, which is the sum of the values in the
first two panels. The lower two panels compare the matching outcomes. The left panel shows the
match rate on the doctors’ side, defined as the ratio of matched doctors to the total number of
doctors, and the right panel shows the match rate on the hospitals’ side, defined as the ratio of
filled slots to the total number of slots. The blue line represents AE, the magenta line represents
the stable outcome, and the green line represents the DA outcome.

We examine four market settings in which n and m grow, with the pairs given by

(n,m) ∈ {(20, 40), (40, 60), (60, 80), (80, 100)}.

For each market setting, we compute the equilibrium outcome 50 times and report the

average results. Figure 4 compares the three market outcomes. First, AE closely ap-

proximates both the average welfare on each side and the matching outcomes observed

in the stable outcome, even when the numbers of doctors and slots are relatively small.

Second, as expected, the average social welfare in the DA outcome is lower than that in

the stable outcome. Nevertheless, as the market size increases, the welfare measures and

matching outcomes under DA exhibit trends similar to those observed in AE and the

stable outcome.
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C Monte Carlo Simulation

We start by describing the overall setting of the Monte Carlo simulation. All the detailed

parameter values are left to Appendix C.3. There are 10 prefectures, numbered from 0

to 9, grouped into three regions: {0, 1} ∈ R0, {2, 3, 4, 5} ∈ R1, and {6, 7, 8, 9} ∈ R2. R0

represents an urban area, and R1 and R2 are rural areas. The government is concerned

about the inefficient supply of medical services in R2 and attempts to meet a lower bound

in terms of the number of matches in the region.

We have a total of 20 hospitals. Each hospital is placed in one of the prefectures

based on a multinomial distribution. Hospital characteristics are modeled dynamically.

When we denote each hospital by h, each hospital’s capacity, denoted by cht, starts with

a Poisson distribution at time t = 0 and evolves over time through a stochastic process

involving increments and decrements modeled by independent Poisson distributions. We

use j to denote each slot in a hospital. Other hospital-specific characteristics, like the

number of beds, are captured by a variable zht, which follows a normal distribution.

We have 200 doctors and they are distributed among the prefectures in a similar

way to the hospitals. Each doctor belongs to one of 20 medical schools, and the schools

themselves are distributed among prefectures, also based on a multinomial distribution.

Each school has an equal split of the doctors in the same prefecture. The schools have

characteristics such as average ability measures that follow a normal distribution. We

use s to denote the school and i to denote a doctor.

We define the net joint surplus generated by a matching between a slot j and a doctor

i at time t in the following way:

Φijt = Φsht + ξijt,

where

Φsht = Ubase
sht + V base

sht , ξijt = εiht + ηsjt,

and
Ubase
sht = β1,1w1,ht + β1,2w2,ht + β2 |ls − lh|+ β31{h ∈ R1 or h ∈ R2},

V base
sht = γ1x1,st + γ2x2,st,

εiht ∼ Ex1, ηsjt ∼ Ex1.

(12)
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Figure 5. Simulated Stable Outcomes

|ls − lh| is a measure of the distance between school s and hospital h: in this simulation,

we define this as the absolute value of the gap between the prefecture index. And the

last term in Ubase
sht captures the negative impact on the utility from living in rural areas.

Note that these rural areas include R1, which is not the target of the subsidy to ensure

the lower bound on the matching outcomes. We also use Uijt = Ubase
sh(j)t + εih(j)t and

Vijt = V base
s(i)ht + ηs(i)jt to denote the individual level preferences.

C.1 Simulation

We compute a stable outcome of an instance of the above market at one time period. The

number of matches in each region is 94, 43, and 33. The number of unmatched doctors is

30 and the number of unmatched slots is 46. Imagine that the government sets an upper

bound on R0 to increase the number of matches in rural regions. When we set the upper

bound on R0 to 60, the equilibrium numbers of matches are: 60, 45, and 37. The number

of unmatched doctors is 58 and the number of unmatched slots is 74. Under this regional

constraint, the tax levied on the matchings in R0 is 3.149.

Figure 5 depicts the scatter plots of several equilibrium objects when we set α = 0,

which implies that the entire amount of tax is levied on the hospital side. The left four

panels are obtained when we set no regional constraint, and the right four panels are
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Figure 6. Aggregate Objects

obtained when we set an upper bound on R0 to 60. The four panels in each left and

right half set of panels depict the same things for the case of no constraint and regional

constraint. The first and third columns are the results in the stable outcome (with

optimal tax), where each dot represents a match. The upper panels are the scatter plots

of preference of doctor i has for slot j, Uij, and the utilities attained in a stable outcome,

ui. The lower panels are the scatter plots of Ubase
ij and the transfer in a stable outcome,

τih. The second and fourth columns represent aggregate level objects: the upper panels

are the scatter plots of the average of Uij and ui among a matches in a hospital, and the

lower panels are the scatter plots of the average of Uij and aggregate-level transfer, ιih,

from a hospital. In all scatter plots, a red marker represents a match or a hospital in R0,

a green marker for R1, and a blue marker for R2.

As expected, the utility attained in a stable outcome is higher when a doctor can

be matched with a preferred slot, whereas the transfer decreases. This decrease is also

reflected in a decrease in aggregate-level transfers from a hospital: when the average of Uij

in a hospital match increases, the aggregate-level transfers from the hospital decrease. The

impact of a regional constraint on the aggregate-level transfers is clear: in the constrained

region, R0, they decrease under the constraint compared with the case of no constraint.

This is true in the level sense, and the decrease is larger than the changes in other regions.

Note that the changes in the aggregate-level transfers and their sizes depend on the value

of α. For example, in the extreme case of α = 1, the aggregate-level transfers in R0
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increases under the regional constraint. Hence, it is important to estimate the division

of tax on the hospital side and the school side.

Hereafter, we set α = 0.2. Figure 6 summarizes the aggregate-level objects computed

based on the simulated stable outcome. In all the heatmaps, the horizontal axis represents

hospitals and the vertical axis represents schools. Aggregate matching is depicted in the

upper panel in the rightmost column. The number annotated in each cell represents

the number of matches between a hospital and a school. Aggregate-level utilities are

computed following the definition stated in (1).

For the ease of argument, we name the gap between the aggregate-level utilities and

the aggregate-level base utilities by imaginary salary : the imaginary salary from school

is defined as χU
sh ≡ Ush − Ubase

sh and the same one from the hospital side is defined as

χV
sh ≡ V base

sh − Vsh.38 The lower left two panels in Figure 6 show the imaginary salaries

between schools and hospitals. The number of doctors in our simulation is 200, which is

insufficient for approximating the market with an infinite number of doctors. This makes

the gap between the two imaginary wages computed based on U and V .39

C.2 Estimation

The estimation results in the first stage are depicted in Figure 7. The upper panels are

the heatmap of the true values of Φsh, Ush, and Vsh. They are the estimation targets. The

lower panels display the estimation results corresponding to the upper panels. We set the

degree of the polynomials to two. The estimated social surplus follows similar patterns

to the true social surplus, whereas the estimated aggregate-level utilities show different

patterns from the true values. These gaps are due to the incompleteness of polynomial

approximations in equation (4). In practice, we handle this problem by including non-

linearly transformed base variables when making polynomial series.

For the second-stage estimation, we simulate matching outcomes over two periods. In

the first period, the government set the upper bound on region 0 to 80, and in the second

period, the upper bound is changed to 60. Because, in this exercise, we assume that

the true value of aggregate-level transfers is observable, we use the moment conditions

(5) directly to construct a minimum distance estimator. We leave the details of the
38This name is from the fact that the results of the following two are the same: (1) the agents in one

side chooses the agent in the other side by comparing the sum of preference term, imaginary salary, and
individual disturbance and (2) Aggregate matching outcome.

39We can show that these two must be equal in the infinite sample case.
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Figure 7. Estimation Results of the First Stage

Table 12. Estimates

Parameter γ1 γ2 β1,1 β1,2 β3 β2
α
T

∑
tw0t

1−α
T

∑
tw0t

Estimate 0.151 -0.0384 0.907 -0.490 -0.527 -0.879 0.265 1.471
Standard Dev. (0.178) (0.220) (0.0670) (0.0496) (0.0922) (0.130) (0.128) (0.156)

True Value 1.00 -0.400 1.00 -0.500 -1.00 -1.00 0.378 1.510

construction of this estimator in Appendix C.3. In this exercise, we use the time-average

version of the moment conditions, and therefore, the tax term is simply identified as the

time-average of the levied tax.

Table 12 summarizes the estimation results of the second stage. The first six columns

are the structural parameters in equation (12). The last two columns are the average taxes

levied on the doctor side and the hospital side. From these estimation results, the estimate

of α is 0.153, whereas the true value is 0.2. Based on these estimates, we can conduct

a counterfactual analysis: for example, the taxes in the alternative regional constraints,

the matching outcomes, and the salaries are obtained by solving the equilibrium.
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C.3 Minimum distance estimator

We use the time average of both sides to construct the moment conditions (5). Note that,

in this case, it is impossible to identify δUht and δVht for every t because the summation

of them with respect to time determines the moment values. Hence, all we can identify

is the average tax levied over the time periods. We define a function g to represent the

moment conditions:

g(θ) ≡



1
T

∑
t

(∑
s ωs1t

(
XU ′

s1tβU − δUHt

)
−∑s ωs1t

ˆ̃Us1t − ι1t
)

...
1
T

∑
t

(∑
s ωsHt

(
XU ′

sHtβU − δUHt

)
−∑s ωsHt

ˆ̃UsHt − ιHt

)
1
T

∑
t

(∑
s ωs1t

(
XV ′

s1tβV − δV1t
)
−∑s ωs1t

ˆ̃Vs1t − ι1t
)

...
1
T

∑
t

(∑
s ωsHt

(
XV ′

sHtβV − δVHt

)
−∑s ωsHt

ˆ̃VsHt − ιHt

)


.

Our estimator is the minimum distance estimator where the moment condition is

specified in (5). When we write the asymptotic variance of ˆ̃Usht and ˆ̃Vsht by SU
t and SV

t ,

the optimally weighted minimum distance estimator is defined as follows:

θ̂ ≡ arg min
θ

g′(θ)S−1g(θ),

where

S =

 1
T 2

∑
t S

U
t 0

0 1
T 2

∑
t S

V
t

 .

We can compute the asymptotic distribution of the estimator as follows, and the

standard error can be obtained directly40. As the Poisson regression in the first step has

an explicit form of SU
t and SV

t , we can directly compute the estimates of the standard

errors for every parameter by inserting the estimated results.

Theorem C.1. Under the regularity conditions, the asymptotic distribution of θ̂ is as
40We assume that the polynomial approximation regarding the systematic utility is correct. When

there is a misspecification, we must treat the bias due to the misspecified model, which is beyond the
scope of this study.
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follows:

√
ST
(
θ̂ − θ

)
d−→ N

(
0,
(
Γ′S−1Γ

)−1
)
,

where Γ = ∂
∂θ
g(θ).

D Additional analysis

D.1 Test of implicit tax on urban areas

Under the excessive competition for the slots in urban counties, it is possible that the

surplus generated by matches in urban counties has already been diminished due to some

external forces: for example, as the number of slots decreases, it becomes more difficult

for residency programs to secure funding. Given this consideration, the marginal effect

estimates for locations in Tokyo or other urban areas may be underestimated. Here,

we examine whether matches in urban counties are subject to an implicit tax under the

current market outcome.

Empirical strategy We define an individual level transfer as in the main analysis.

Fix any period t and an implicit taxation policy wt = (wzt)z. We define individual-level

transfer from hospital h to doctor i with a ratio α, denoted by τiht, as follows:

τiht := uit −
(
Ubase
sht + εiht − αwzt

)
.

Tax wzt is levied on the matched pair of doctor i and hospital h. The doctor incurs

fraction α of the tax; thus doctor’s payoff without transfer were to be Ubase
ijt − αwrt =

Ubase
sht + εiht−αwrt. In equilibrium, doctor i enjoys equilibrium payoff uit, which could be

different from Ubase
ijt . We interpret the difference between equilibrium payoff and payoff

without transfer as the individual-level transfer from the hospital side to the doctor side.

Now we define an aggregate-level transfer as the average of the individual-level transfer

in a hospital h and denote it by ιht:

ιht :=
1

|D(h)t|
∑

i∈D(h)t

τiht,
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where D(h)t is the set of doctors matched with any slot of hospital h at time t. We have

the same moment conditions for this case as in the main analysis.

As in the main analysis, we model the base utilities as a linear function of observable

characteristics. In addition to them, we define δUht ≡ αwr(h)t and δVht ≡ (1 − α)wr(h)t as

the levied implicit tax on school side and hospital side in period t and treat them as

parameters to be estimated. Our parameters of interest are the following: βU , βV , δUht for

every pair of h and t, and δVht for every pair of z and t. We use θ to indicate the vector

of these parameters: θ :=
(
βU , (δ

U
ht)h,t, βV , (δ

V
ht)h,t

)
.

For the estimation of the aggregate-level utilities are same as our main analysis. For

the second step, we construct the following moment conditions for θ:

∑
s

ωsht

(
XU,base′

sht βU − δUht
)
=
∑
s

ωshtÛsht − ιht, ∀ h, t∑
s

ωsht

(
XV,base′

sht βV − δVht
)
=
∑
s

ωshtV̂sht + ιht, ∀ h, t

By adopting the same measurement model, the estimating equations are as follows:

∑
s

ωshtÛsht = γ0,U + γ1,USht +
∑
s

ωsht

(
XU ′

shtβU − δUht
)
+ ψU

ht∑
s

ωshtV̂sht = γ0,V + γ1,V Sht +
∑
s

ωsht

(
XV ′

shtβV − δVht
)
+ ψV

ht.

We estimate these linear equations using BLP-type IVs.

Estimation results We take advantage of the fact that the regional constraints on

urban areas are getting the more strict as time goes to clarify the existence of implicit

tax. As we explain in Section 2, the government lowers the upper bounds on the number

of matches in the urban areas by 5% every year. Hence, if the surplus in urban areas have

been decreased due to the constraints, the estimated coefficients on dummy variables of

urban or Tokyo will decrease over the years.

Table 13 shows the estimation results based on IV estimation: where we include all the

covariates in Table 5 and additioanly the interaction terms between dummy variables of

urban and Tokyo and the dummy variables of each year. As found in every specifications

for both sides, we do not find the decrease in the coefficients of dummy variables of urban

areas. Furthermore, we do not find any positive impact of living in urban areas except
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Table 13. Estimation Result: Tax Parameters
Degree of polynomials = 3

(1) (2) (3) (4)
University University Hospital Hospital

Constant -6.658*** -6.704*** 1.875** 1.966**
(0.314) (0.327) (0.848) (0.874)

Salary (million Yen) 2.412*** 2.519*** -1.579** -1.810**
(0.445) (0.478) (0.706) (0.793)

Urban 0.0338 0.0429 0.114* 0.119*
(0.0470) (0.0496) (0.0671) (0.0702)

Urban × 2018 0.0639 -0.00972 0.0882 0.0805
(0.0577) (0.0644) (0.0786) (0.0878)

Urban × 2019 0.0752 0.0509 -0.0886 -0.0634
(0.0575) (0.0640) (0.0821) (0.0892)

Tokyo -0.00704 -0.0740
(0.0751) (0.116)

Tokyo × 2018 0.265*** 0.0282
(0.102) (0.144)

Tokyo × 2019 0.0903 -0.0940
(0.102) (0.155)

N 2627 2627 2627 2627
Other covariates

√ √ √ √
Tokyo × Year

√ √

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Figure 8. Relative Size of Coefficients in Doctor’s Preference.

for living in Tokyo in 2018. Based on these results, we conclude that the current market

does not suffer from any implicit tax and the market outcome is the aggregate equilibrium

under the reduced capacities.

D.2 Relative impacts

To grab the sizes of impacts, we compute the ratio of these coefficients to the aggregate-

level utility. Specifically, we first transform the aggregate-level utilities into monetary

unit based on the estimation results in the second stage estimation: for doctor side, we

compute Umoney
sht ≡

ˆ̃Usht−γ̂0,U,t

γ̂1,U
and for hospital side, we compute V money

sht ≡
ˆ̃Vsht−γ̂0,V,t

γ̂1,V
.41

Then, we take the average of these transformed aggregate-level utilities with respect to

the periods and the institutions in the other side of the market: Ūmoney
s ≡ 1

HT

∑
h,t U

money
sht

41Note that the constants depend on period t, i.e. γ̂0,U,t and γ̂0,V,t, because we include the dummy
variables of every years.
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Figure 9. Relative Size of Coefficients in Hospital’s Preference.

and V̄ money
h ≡ 1

ST

∑
s,t V

money
sht . Ūmoney

s and V̄ money
s are measures of the expected utilities

in the matching market computed for every universities and hospitals. Finally, we take

the ratio of the estimated coefficients to these measures to grab the relative size of the

coefficients. For the logarithm covariates, we compute the relative size of 10% changes of

the covariates.

Figure 8 depicts the histograms of the relative size of the coefficients in doctor’s

preference for the four covariates which have statistically significant influence in Table 6:

the logarithm of distance, the logarithm of the number of previous matches, the dummy

variable of affiliation, and the logarithm of the number of beds. In each panel, we show

the mean and the median of the relative size of impacts. Although there is variation in

the utility level among the universities, the distribution of the relative size of impacts

has single peak and their means and the medians are not so different. The average of the

relative size of impact of 10% change in distance amounts to 1.4% of the doctor’s utility,
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the same one of the number of previous match amounts to 4.16%, and the same one of

the number of beds amounts to 2.76%. On average, affiliation relationship amounts to

about 15.58% of the doctors’ average utillities.

Figure 9 shows the same histograms for the hospital side preference. We plot the

historgrams of the four covariates which shows the statistically significance in Table 7:

the logarithm of distance, the logarithm of the number of previous matches, affiliation

relationship, and the indicator of the public university. As the average utilities of hospitals

are larger than the ones of doctors in the monetary unit sense, the computed relative size

of impacts are likely smaller than the values obtained in the case of doctors. The average

of the relative size of impact of 10% change in distance amounts to 0.67% of the doctor’s

utility and the same one of the number of previous match amounts to 2.81%. On average,

graduates from public university, which is usually an elite school, gives 5.23% increase

in the utility of hospitals. Although the affiliation relationship gives the largest negative

impact on the utility of hospitals, this estimate is not stable for the choice of the degree

of polynomials as shown in Appendix D.3.

D.3 Results when the degree of polynomial is set to 2

Here we show the empirical results obtained when we set the degree of polynomials in

the first step to two. All the tables and figures listed here corresponds to the tables and

figures shown in Section 6 and Appendix D.1. We do not find any qualittative difference

in the main findings from the case where we set the degree of polynomials to three.
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Figure 10. Aggregate matchings, estimated systematic utilities and estimated social
surpluses.
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Table 14. Estimation Result: Preference Parameters
Degree of polynomials = 2

(1) (2) (3) (4)
University University (IV) Hospital Hospital (IV)

Constant -5.917*** -7.988*** 1.485** 1.703**
(0.225) (0.429) (0.705) (0.787)

Salary (million Yen) 0.564*** 4.129*** 0.704*** -1.231*
(0.143) (0.627) (0.142) (0.718)

Tokyo -0.129*** 0.0102 0.100* -0.00294
(0.0492) (0.0604) (0.0524) (0.0621)

urban -0.102*** 0.0524 0.252*** 0.191***
(0.0339) (0.0436) (0.0317) (0.0418)

log(Distance) -0.380*** -0.400*** -0.331*** -0.304***
(0.0157) (0.0158) (0.0150) (0.0172)

log(Previous Match) 1.583*** 1.563*** 1.663*** 1.667***
(0.0398) (0.0302) (0.0398) (0.0449)

Affiliation -0.488** -0.431*** -2.676*** -2.827***
(0.199) (0.146) (0.173) (0.194)

University hospital -0.199** 0.0127
(0.0800) (0.103)

Govermental hospital 0.0319 -0.0589
(0.0341) (0.0433)

log(Beds) 0.511*** 0.628***
(0.0359) (0.0462)

Public university 0.182*** 0.176***
(0.0531) (0.0573)

Prestige -1.905*** -3.125***
(0.668) (0.727)

N 2847 2627 2847 2627
Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Table 15. Estimation Result: Tax Parameters
Degree of polynomials = 2

(1) (2) (3) (4)
University University Hospital Hospital

Constant -8.028*** -7.928*** 1.755** 1.725**
(0.415) (0.427) (0.763) (0.784)

Salary (million Yen) 4.298*** 4.121*** -1.276** -1.234*
(0.589) (0.625) (0.643) (0.719)

Urban -0.100 -0.116* 0.106* 0.0755
(0.0621) (0.0649) (0.0623) (0.0646)

Urban × 2018 0.275*** 0.247*** 0.179** 0.239***
(0.0763) (0.0842) (0.0720) (0.0811)

Urban × 2019 0.217*** 0.256*** 0.0655 0.107
(0.0761) (0.0838) (0.0749) (0.0805)

Tokyo 0.0257 0.119
(0.0982) (0.101)

Tokyo × 2018 0.0976 -0.216*
(0.133) (0.123)

Tokyo × 2019 -0.145 -0.151
(0.133) (0.132)

N 2627 2627 2627 2627
Other covariates

√ √ √ √
Tokyo × Year

√ √

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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Table 16. University preference parameters (unit: million Yen)
Degree of polynomials = 2

(1) (2) (3)
Coefficient of Salary = 4.129 4.298 4.121

log(Distance) -0.097∗∗∗ -0.094∗∗∗ -0.097∗∗∗
(0.01) (0.01) (0.01)

log(Previous Match) 0.378∗∗∗ 0.363∗∗∗ 0.379∗∗∗
(0.06) (0.05) (0.06)

Affiliation -0.104∗∗ -0.102∗∗ -0.106∗∗
(0.04) (0.04) (0.04)

University Hospital 0.003 0.006 0.003
(0.02) (0.02) (0.02)

Governmental Hospital -0.014 -0.015 -0.014
(0.01) (0.01) (0.01)

log(Beds) 0.152∗∗∗ 0.148∗∗∗ 0.153∗∗∗
(0.02) (0.02) (0.02)

N 2627 2627 2627
Urban × Year

√ √
Tokyo × Year

√
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Table 17. Hospital preference parameters (unit: million Yen)
Degree of polynomials = 2

(1) (2) (3)
Coefficient of Salary = 1.231 1.276 1.234

log(Distance) -0.247 -0.238 -0.247
(0.15) (0.13) (0.15)

log(Previous Match) 1.354 1.307∗ 1.352
(0.79) (0.66) (0.79)

Affiliation -2.296 -2.222∗ -2.294
(1.29) (1.07) (1.29)

Public University 0.143 0.136 0.141
(0.09) (0.07) (0.09)

Prestige -2.537 -2.451∗ -2.522
(1.37) (1.15) (1.36)

N 2627 2627 2627
Urban × Year

√ √
Tokyo × Year

√

D.4 Counterfactual simulations for the other years
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Table 18. Comparison between Aggregate-level Equilibria

Policy AC (Artificial Caps) NC (No Caps) OS (Optimal Subsidy)

Artificial caps Yes No No
Floor constraints Yes No Yes
Subsidies No No Yes

2017
Match rate 0.868 0.912 0.912
Doctors’ welfare 32795.8 33441.7 33444.5
Hospitals’ welfare 29586.6 31578.1 31579.4
Government’s revenue 0.0 0.0 [−10.5,−7.4]
Total welfare 62382.3 65019.8 [65013.3, 65016.5]
#(subsidized regions) 0 0 3
Average subsidy 0.000 0.000 -0.040
#(constraint violations) 0 3 0

2018
Match rate 0.844 0.895 0.896
Doctors’ welfare 33928.3 34272.6 34277.1
Hospitals’ welfare 30390.4 33700.2 33703.4
Government’s revenue 0.0 0.0 [−18.9,−13.3]
Total welfare 64318.7 67972.8 [67961.6, 67967.1]
#(subsidized regions) 0 0 5
Average subsidy 0.000 0.000 -0.038
#(constraint violations) 0 5 0

2019
Match rate 0.869 0.912 0.912
Doctors’ welfare 33244.7 33752.2 33755.5
Hospitals’ welfare 30406.1 32648.8 32649.1
Government’s revenue 0.0 0.0 [−9.4,−6.6]
Total welfare 63650.8 66401.0 [66395.2, 66398.0]
#(subsidized regions) 0 0 2
Average subsidy 0.000 0.000 -0.042
#(constraint violations) 0 2 0

* All values except match rates, #(subsidized regions), and #(constraint violations) are expressed in units
of 1 million JPY per month. The government’s revenue is positive when taxes are imposed on doctors
and hospitals and negative when subsidies are provided to them. The welfare of doctors and hospitals is
scaled according to specification (1) in Table 6 and Table 7. We present the bounds of the government’s
net revenue, scaled by the coefficients on the doctor side and the hospital side, respectively. The total
welfare is the sum of doctors’ welfare, hospitals’ welfare, and the government’s revenue. #(constraint
violations) counts the number of prefectures violating the lower bounds (among the 15 rural regions).
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