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• algorithms are used by organizations to guide high-stakes decisions

• which patients receive treatment? which borrowers are granted a loan?


• many of these algorithms have a disparate impact

• their benefits/harms fall disproportionately on specific social groups

• however organizations value other objectives (e.g., accuracy, profit)


• can we reduce disparate impact without compromising other objectives?


• legal relevance: under US federal law, a policy with disparate impact may be 
permissible if it is necessary to achieve a legitimate business interest

introduction



three-part legal process
codified under Title VII of the Civil Rights Act of 1964  
(cf. 42 U.S.C. § 2000e–2(k); Title VI Manual of DoJ)

PART 3: 

IS THERE A VALID 
LESS-DISCRIMINATORY 

ALTERNATIVE?

PART 1: 

ESTABLISHING 
DISPARATE IMPACT

PART 2: 

ESTABLISHING 
BUSINESS NECESSITY



ORGANIZATION

CHALLENGER

the existing algorithm has 
disproportionate harms 

for a certain group of people

(e.g., a regulator or 
private individual)

PART 1: 

ESTABLISHING 
DISPARATE IMPACT

(employs an algorithm, 
e.g., to make hiring 

decisions)



(employs an algorithm, 
e.g., to make hiring 

decisions)

CHALLENGER
(e.g., a regulator or 
private individual)

PART 2: 

ESTABLISHING 
BUSINESS NECESSITY

such disparate impact is necessary to 
achieve a legitimate business interest

ORGANIZATION



CHALLENGER

this alternative algorithm would achieve 
those same business objectives, and 

has less disparate impact

(e.g., a regulator or 
private individual)

WINS

PART 3: 

IS THERE A VALID  
LESS-DISCRIMINATORY 

ALTERNATIVE?

(employs an algorithm, 
e.g., to make hiring 

decisions)

ORGANIZATION



PART 3: 

IS THERE A VALID 
LESS-DISCRIMINATORY 

ALTERNATIVE?

PART 1: 

ESTABLISHING 
DISPARATE IMPACT

PART 2: 

ESTABLISHING 
BUSINESS NECESSITY

our framework is useful 
for evaluating this final part



other potential applications

• organization itself may ask this (e.g., integrity, reputation, risk mitigation)


• regulator may seek to provide guidance on algorithms that should be avoided

can we reduce disparate impact without compromising other objectives?



• introduce a conceptual framework for assessing the existence of 
less discriminatory alternatives, building on Liang, Lu, Mu, and Okumura (2024)


• develop a simple and practical test for testing the “fairness-improvability” of 
a status-quo algorithm given data

• a new econometric result on bootstrap consistency specifically tailored to AI settings

• a game-theoretic foundation for repeated sample splitting


• apply the test to a healthcare algorithm used in the U.S., 
and find strong statistical evidence of the existence of less discriminatory alternative

this paper:

contribution

bootstrap



some relevant literature
• finding less discriminatory algorithms:


• Coston et al. (2021), Viviano and Bradic (2023), Blattner and Spiess (2023), Gillis et al. (2024) …

• primarily focus on how to find a good algorithm by solving an optimization problem

• our focus: test if the improvement of the new algorithm is statistically significant

• complementary: any method developed in the literature can be used with our test


• closely related work: Liu and Molinari (2024)

• study estimation of the entire “fairness-accuracy frontier”

• our focus: a narrower question “is there a better alternative?”

• accommodates any exogenous constraints on algorithm class

• e.g., capacity constraints, shape restrictions (linear, monotone, etc.)
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• each subject  is described by three variables:

• outcome  taking values in 


• covariate vector  taking values in 


• group 

i
Yi 𝒴 ⊆ ℝ

Xi 𝒳 ⊆ ℝd

Gi ∈ 𝒢 := {r, b}

need for medical procedure

race (Black or White)

image scans 
# of past hospital visits 

blood tests

e.g.

setup



• each subject  is described by three variables:

• outcome  taking values in 


• covariate vector  taking values in 


• group 

i
Yi 𝒴 ⊆ ℝ

Xi 𝒳 ⊆ ℝd

Gi ∈ 𝒢 := {r, b}

need for medical procedure
image scans 

# of past hospital visits 
blood tests

e.g.

• in the population, 


• an algorithm is a mapping  from the covariate vector into a decision

• : decision for subject 

(Xi, Yi, Gi) ∼iid P

a : 𝒳 → 𝒟
a(Xi) i

setup

race (Black or White)

 can be included in Gi Xi



setup

• there is a status quo algorithm  which is under contention


• analyst’s goal is to assess whether it is possible to reduce 
the "disparate impact" of  without compromising on another objective


• we will call these two objectives simply fairness and accuracy

a0

a0

an umbrella term for any objective of the organization



how we define accuracy and fairness
• accuracy utility function 

• fairness utility function   

uA : 𝒳 × 𝒴 × 𝒟 → ℝ+
uF : 𝒳 × 𝒴 × 𝒟 → ℝ+

 is possibly identical to , but can be differentuF uA



how we define accuracy and fairness
• accuracy utility function 

• fairness utility function   

uA : 𝒳 × 𝒴 × 𝒟 → ℝ+
uF : 𝒳 × 𝒴 × 𝒟 → ℝ+

• consider expected utility under algorithm  for each group :


 ,    


• accuracy for group  of algorithm  is defined as  

• (un)fairness (or disparate impact) of algorithm  is defined as 

a g ∈ {r, b}

Ug
A(a) := EP [uA(X, Y, a(X)) ∣ G = g] Ug

F(a) := EP [uF(X, Y, a(X)) ∣ G = g]

g a Ug
A(a)

a |Ur
F(a) − Ub

F(a) |



how we define accuracy and fairness
• accuracy utility function 

• fairness utility function   


• consider expected utility under algorithm  for each group :


 ,    

uA : 𝒳 × 𝒴 × 𝒟 → ℝ+
uF : 𝒳 × 𝒴 × 𝒟 → ℝ+

a g ∈ {r, b}

Ug
A(a) := EP [uA(X, Y, a(X)) ∣ G = g] Ug

F(a) := EP [uF(X, Y, a(X)) ∣ G = g]

definition: 

• algorithm  is more accurate than  if  for each group 


• algorithm  is more fair than  if 


a1 a0 Ug
A(a1) > Ug

A(a0) g ∈ {r, b}
a1 a0 |Ur

F(a1) − Ub
F(a1) | < |Ur

F(a0) − Ub
F(a0) |



examples: fairness and accuracy criteria
1. correct classification rate:


Ug(a) := P(Y = a(X) ∣ G = g)

sick or not

treat or not

race (white or black)

:a(X)
:G

:Y

average probability of correct diagnosis 
for patients in group g

Ug
A = Ug

F =: Ug



examples: fairness and accuracy criteria
1. correct classification rate:





2. correct positive rate:


Ug(a) := P(Y = a(X) ∣ G = g)

Ug(a) := P(Y = a(X) ∣ Y = 1,G = g)

average probability of correct diagnosis 
for patients in group  who are sickg

sick or not

treat or not

race (white or black)

Ug
A = Ug

F =: Ug

:a(X)
:G

:Y



examples: fairness and accuracy criteria
1. correct classification rate:





2. correct positive rate:


Ug(a) := P(Y = a(X) ∣ G = g)

Ug(a) := P(Y = a(X) ∣ Y = 1,G = g)

sick or not

treat or not

race (white or black)

Ug
A = Ug

F =: Ug

:a(X)
:G

:Y

By changing  and , our framework can accommodate 
most metrics proposed in the literature

uA uF



• with these definitions, we can formally discuss the existence of less discriminatory alternatives

• is there any more accurate and more fair algorithm?


• not only the existence but also the magnitude of potential gains may matter


• Title VI legal manual by the Department of Justice writes:


"investigating agencies must determine whether the disparity is large enough to matter, i.e., 
 it is sufficiently significant to establish a legal violation." 

• our framework can allow for such magnitude considerations 

magnitude considerations



definition: fix any magnitude parameters .


algorithm  constitutes a -improvement on  if

Δr, Δb, Δf ∈ ℝ
a1 (Δr, Δb, Δf) a0

• 


• 


•

Ur
A(a1) > (1 + Δr)Ur

A(a0)

Ub
A(a1) > (1 + Δb)Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | < (1 − Δf) |Ur
F(a0) − Ub

F(a0) |

accuracy for group  increases by  percentr Δr

accuracy for group  increases by  percentb Δb

disparity decreases by  percentΔf

magnitude considerations



definition: fix any magnitude parameters .


algorithm  constitutes a -improvement on  if

Δr, Δb, Δf ∈ ℝ
a1 (Δr, Δb, Δf) a0

• 


• 


•

Ur
A(a1) > (1 + Δr)Ur

A(a0)

Ub
A(a1) > (1 + Δb)Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | < (1 − Δf) |Ur
F(a0) − Ub

F(a0) |

• NB: -improvement  more accurate and more fair(0,0,0) ⇔

magnitude considerations



what we want to evaluate

• our goal is to evaluate the improvability of a status quo algorithm  
within a given class  of algorithms

• : a class of permissible algorithms (e.g., shape or capacity constraints)


• formally, we will test the following null hypothesis:

a0
𝒜

𝒜

: there is no algorithm within class  that  -improves on H0 𝒜 (Δr, Δb, Δf) a0



model

testing procedure

microfoundation

empirical application



our proposed procedure
• the analyst does not know , 

but has access to a dataset consisting of  i.i.d. observations  from 
P

n (Yi, Xi, Gi)1≤i≤n P

β

Data

1 − β

Train

Test

Step 1: 
 
randomly split the data into train and test sets



our proposed procedure

β

Data

1 − β

Train

Test

candidate 
algorithm a1

Step 2: 
 
identify a candidate algorithm  
applying a selection rule to the training data

a1



our proposed procedure

β

Data

1 − β

Train

Test

Step 2: 
 
identify a candidate algorithm  
applying a selection rule to the training data

a1

a mapping  from a training data into an algorithmρ

ρ candidate 
algorithm a1

• general-purpose ML method (e.g., random forests)

• method proposed in algorithmic fairness literature



our proposed procedure

β

Data

1 − β

Train

Test

Step 3: 
 
test whether  -improves on  
computing a -value (details come next)

a1 (Δr, Δb, Δf) a0
p

status quo 
algorithm a0

candidate 
algorithm a1



our proposed procedure

β

Data

1 − β

Train

Test status quo 
algorithm a0

Step 4: 
 
repeat steps 1-3  times, and  
obtain -values 

K
p (p1, …, pK)

aggregate the result by 
computing the median -value 

 
p

p := median{p1, …, pK}

and reject the null if p < α
2

candidate 
algorithm a1



more details on step 3
• step 3: test whether  is -improves on a1 (Δr, Δb, Δf) a0



more details on step 3
• step 3: test whether  is more accurate and more fair than a1 a0

assume  
for simplicity

(Δr, Δb, Δf) := (0,0,0)



more details on step 3
• step 3: test whether  is more accurate and more fair than a1 a0

null hypothesis H0 alternative H1

assume  
for simplicity

(Δr, Δb, Δf) := (0,0,0)

Ur
A(a1) > Ur

A(a0)

Ub
A(a1) > Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | < |Ur
F(a0) − Ub

F(a0) |

Ur
A(a1) ≤ Ur

A(a0)

Ub
A(a1) ≤ Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | ≥ |Ur
F(a0) − Ub

F(a0) |

AND

AND

OR

OR

 is more accurate and more fair than a1 a0



more details on step 3

null hypothesis H0 alternative H1

Ur
A(a1) > Ur

A(a0)

Ub
A(a1) > Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | < |Ur
F(a0) − Ub

F(a0) |

Ur
A(a1) ≤ Ur

A(a0)

Ub
A(a1) ≤ Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | ≥ |Ur
F(a0) − Ub

F(a0) |

AND

AND

OR

OR

union of three conditions

• step 3: test whether  is more accurate and more fair than a1 a0



more details on step 3
• step 3: test whether  is more accurate and more fair on a1 a0

null hypothesis H0 alternative H1

Ur
A(a1) > Ur

A(a0)

Ub
A(a1) > Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | < |Ur
F(a0) − Ub

F(a0) |

Ur
A(a1) ≤ Ur

A(a0)

Ub
A(a1) ≤ Ub

A(a0)

|Ur
F(a1) − Ub

F(a1) | ≥ |Ur
F(a0) − Ub

F(a0) |

AND

AND

OR

OR

we will construct a -value 
for each part individually

p combine these by taking the maximum 
(intersection-union method)

pr
k

pb
k

p f
k

 pk := max {pr
k, pb

k , pf
k}



null hypothesis Hr
0 alternative Hr

1

Ur
A(a1) > Ur

A(a0)Ur
A(a1) ≤ Ur

A(a0)

• define  as the sample analog of ; compute it using the test set


• define a test statistics  


• generate a -value  using the nonparametric bootstrap

̂Ur
A (a) Ur

A(a)

̂Tr,n := ̂Ur
A (a1) − ̂Ur

A (a0)

p pr
k

expected to be negative if  is trueHr
0

pr
k

construting -value for a subhypothesisp

bootstrap



null hypothesis Hr
0 alternative Hr

1

Ur
A(a1) > Ur

A(a0)Ur
A(a1) ≤ Ur

A(a0)

• define  as the sample analog of ; compute it using the test set


• define a test statistics  


• generate a -value  using the nonparametric bootstrap


• avoid analytically computing standard errors case-by-case for each utility function


• ( -values for other two parts are defined similarly)

̂Ur
A (a) Ur

A(a)

̂Tr,n := ̂Ur
A (a1) − ̂Ur

A (a0)

p pr
k

p

expected to be negative if  is trueHr
0

pr
k

construting -value for a subhypothesisp



1. the appropriate definitions of disparate impact and business-relevant criteria  
vary substantially across applications

• we want a framework that is flexible enough to accommodate 

any such definitions that may emerge in practice


2. there are often exogenous constraints on the algorithm space  
(e.g., capacity constraints, monotonicity in some variable, linearity)

• we want a procedure that accommodates any such constraints


3. transparency and simplicity of use for practitioners

three practical objectives 



guarantees for this procedure (informal)

• under regularity conditions, our test is asymptotically valid

• valid: if the null is true, then we can control the probability of incorrect rejection


• when the selection rule is "improvement-convergent," then the test is consistent 
• consistent: if the null is false, we can correctly reject it 

with probability converging to 1 as the sample grows large

: there is no algorithm within class  that  -improves on H0 𝒜 (Δr, Δb, Δf) a0

recall the null hypothesis:



guarantees for this procedure (informal)

• when the selection rule is "improvement-convergent," then the test is consistent

• consistent: if the null is false, we can correctly reject it 

with probability converging to 1 as the sample grows large

• improvement-convergent: the selection rule can find a better candidate  

when the sample size is large and  is improvable within class 

• NB: validity does not require improvement-convergence

a0 𝒜

ρ
selection rule



comments

• the procedure tests the existence of an alternative that achieves improvement


• strictly speaking, the procedure does not identify a specific alternative


• however, if we reject the null, our procedure implies that  
the used selection rule can find a better alternative

• if we need a single algorithm to use after rejecting the null, we recommend 

applying the selection rule to the entire dataset and using its output



model

testing procedure

microfoundation

empirical application



microfoundation for repeated sample-splitting

• we recommend using the median -value across  train-test splits


• why not just conduct a test with a single train-test split ( )?

• both valid

• no known statistical advantage (e.g., power) for repeated sample splitting

• ...then why?

p K ≥ 2

K := 1



microfoundation for repeated sample-splitting
• resulting -value can vary substantially across different splitsp

p(1) = 0.08 p(2) = 0.11 p(100) := 0.04
...



microfoundation for repeated sample-splitting
• resulting -value can vary substantially across different splitsp

p(1) = 0.08 p(2) = 0.11 p(100) := 0.04
...

analyst

this is the split I used 
we can reject the null with α := 0.05



microfoundation for repeated sample-splitting
• resulting -value can vary substantially across different splitsp

• relying on a single split introduces the possibility of manipulation by the analyst


• Ritzwoller and Romano (2023) put:

"Researchers are incentivized to report significant results. 
If there is scope to materially alter the statistics that they report 

through the choice of the split of their sample, 
should this choice be left to chance?"



microfoundation for repeated sample-splitting

• how can we address this cherry-picking problem?


• our naive intuition says:

repeated sample-splitting reduces the sensitivity to the choice of splits, and  
provides stronger safeguards against manipulation

formalize this intuition!



setup
• game played by two players: an analyst and a policymaker


• there is a fixed statistical test of exact size 

• the test produces a -value given train-test split (e.g., step 1-3 of our test)


• policymaker first chooses between two procedures

1. single train-test split: reject the null if 

2.  train-test splits (our proposed method): reject if 


• analyst must follow the chosen procedure, and

• repeats it  times at a cost of  for procedure  

α
p

p < α
K p < α/2

m cℓ(m) ℓ ∈ {1,2}

e.g. constant cost  per repetitionC



setup
• game played by two players: an analyst and a policymaker


• there is a fixed statistical test of exact size 

• the test produces a -value given train-test split (e.g., step 1-3 of our test)


• policymaker first chooses between two procedures

1. single train-test split: reject the null if 

2.  train-test splits (our proposed method): reject if 


• analyst must follow the chosen procedure, and

• repeats it  times at a cost of  for procedure  

α
p

p < α
K p < α/2

m cℓ(m) ℓ ∈ {1,2}

increasing, weakly convex



setup
• game played by two players: an analyst and a policymaker


• there is a fixed statistical test of exact size 

• the test produces a -value given train-test split (e.g., step 1-3 of our test)


• policymaker first chooses between two procedures

1. single train-test split: reject the null if 

2.  train-test splits (our proposed method): reject if 


• analyst must follow the chosen procedure, and

• repeats it  times at a cost of  for procedure  


• reports the -value from one of these repetitions


• the reported -value determines whether the null is rejected (as if )


α
p

p < α
K p < α/2

m cℓ(m) ℓ ∈ {1,2}
p

p m = 1



setup
• we are interested in settings where the analyst wants to reject the null  

even when it holds


• we condition on the state of the world in which the null hypothesis holds
status quo is not improvable

player \ action reject not reject

analyst

policymaker

1 − cℓ(m) −cℓ(m)

0 1

analyst wants to reject

policymaker does not want to incorrectly reject



game tree

policymaker procedure 1

procedure 2

analyst

m

m

nature

generate 
-valuesp

analyst

repeated splitting

single splitting payoffs are 
realized

payoffs are 
realized

we consider subgame-perfect equilibria

pick a repetition 
to report



backward induction: analyst's problem

policymaker procedure 1

procedure 2

analyst

m

m

nature

repeated splitting

if policymaker chooses procedure 2 (  repeated sample splitting) K

single splitting analyst
payoffs are 

realized

payoffs are 
realized

pick a repetition 
to report

generate 
-valuesp



p1
1 p2

1 … pK−1
1 pK

1
p1

2 p2
2 … pK−1

2 pK
2

⋮
p1

m−1 p2
m−1 … pK−1

m−1 pK
m−1

p1
m p2

m … pK−1
m pK

m

backward induction: analyst's problem

• suppose that the analyst chooses # of repetition 

•  -values are generated:

m
m × K p

repetition 1 ≤ i ≤ m

split 1 ≤ k ≤ K
for each repetition, 

 -values are generatedK p

if policymaker chooses procedure 2 (  repeated sample splitting) K

not i.i.d. (positively correlated)



p1
1 p2

1 … pK−1
1 pK

1
p1

2 p2
2 … pK−1

2 pK
2

⋮
p1

m−1 p2
m−1 … pK−1

m−1 pK
m−1

p1
m p2

m … pK−1
m pK

m

backward induction: analyst's problem

• suppose that the analyst chooses # of repetition 

•  -values are generated:

m
m × K p

repetition 1 ≤ i ≤ m

split 1 ≤ k ≤ K

if policymaker chooses procedure 2 (  repeated sample splitting) K

p1
p2

pK−1
pK

median 
-valuesp

if any of them 
is less than , 

then reject the null
α/2



p1
1 p2

1 … pK−1
1 pK

1
p1

2 p2
2 … pK−1

2 pK
2

⋮
p1

m−1 p2
m−1 … pK−1

m−1 pK
m−1

p1
m p2

m … pK−1
m pK

m

backward induction: analyst's problem

• suppose that the analyst chooses # of repetition 

•  -values are generated:

m
m × K p

if policymaker chooses procedure 2 (  repeated sample splitting) K

p1
p2

pK−1
pK

median 
-valuesp

if any of them 
is less than , 

then reject the null
α/2

• analyst chooses  to maximize
m

P(rejection ∣ m, procedure 2) − c2(m)

repetition 1 ≤ i ≤ m



backward induction: analyst's problem

policymaker procedure 1

procedure 2

analyst

m

m

nature

generate 
-valuesp

single splitting

repeated splitting

if policymaker chooses procedure 1 (single sample splitting) 

analyst
payoffs are 

realized

payoffs are 
realized

pick a repetition 
to report



p1
1 p2

1 … pK−1
1 pK

1
p1

2 p2
2 … pK−1

2 pK
2

⋮
p1

m−1 p2
m−1 … pK−1

m−1 pK
m−1

p1
m p2

m … pK−1
m pK

m

backward induction: analyst's problem

• suppose that the analyst chooses # of repetition 

•  -values are generated:

m
m × 1 p

if policymaker chooses procedure 1 (single sample splitting) 

if any of them is less than , 
then reject the null

α

• analyst chooses  to maximize
m

P(rejection ∣ m, procedure 1) − c1(m)

repetition 1 ≤ i ≤ m



backward induction: policymaker's problem

given these analyst's best responses  and , 
policymaker chooses the procedure that minimizes the probability that 
the null is incorrectly rejected

m*1 m*2

analyst's optimal choice of  
given procedure 1

m



backward induction: policymaker's problem

definition: procedure  is more robust to manipulation than procedure  
                  if the probability of incorrect rejection is lower for  in equilibrium 

ℓ ℓ′ ≠ ℓ
ℓ



result (informal)

under a mild assumption, for  sufficiently large, 
procedure 2 (repeated sample splitting) is more robust to manipulation 
than procedure 1 (single sample splitting)

K

• -values are not perfectly correlated

• cost of an extra sample splitting is not large

p



proof idea
• why would we expect the result to be true? -- concentration of the median

• to cherry-pick given a single sample split, analyst just needs to reject under one split

• to cherry-pick given  sample splits, analyst needs to reject under at least half of them

• # of rejections is "almost deterministic" if -values are i.i.d. across random splits

• leaving little room for manipulation


• formalizing this is not straightforward because -values are NOT i.i.d.

• they are positively correlated. can't use the most standard concentration inequalities


• however, note that -values are exchangeable; we can leverage de Finetti's theorem 
to show the result

K
p

p

p
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empirical application
• we consider a dataset from Obermeyer et al. (2019)

• : patient's medical profile

• : race (Black or White)

• : the number of active chronic illnesses in the next year

• : whether to automatically enroll the patient in a care management program


• status quo algorithm : the hospital's algorithm (assign 3% of patients to care)


• we apply our approach to evaluate the improvability of this algorithm 
within the class of algorithms  that also enrolls 3% of patients

• class of permissible algorithms  is restricted by capacity constraint

X
G
Y
D

a0

a : 𝒳 → {0,1}
𝒜



accuracy and fairness

• similar to Obermeyer et al. (2019), let




• an algorithm is:


• more accurate if the expected number of health conditions is higher 
among both Black and White patients assigned to the program

Ug
A(a) = Ug

F(a) := E[Y ∣ a(X) = 1,G = g]

expected number of illnesses for patients in group  
who are assigned to the program

g

high : the algorithm successfully identifies sick patients  
                    who are likely to derive greater benefits from the care

Ug(a)



accuracy and fairness

• similar to Obermeyer et al. (2019), let




• an algorithm is:


• more accurate if the expected number of health conditions is higher 
among both Black and White patients assigned to the program


• more fair if it reduces the disparity in the expected number of health conditions 
among Black and White patients assigned to the program

Ug
A(a) = Ug

F(a) := E[Y ∣ a(X) = 1,G = g]

expected number of illnesses for patients in group  
who are assigned to the program

g



status quo algorithm

:Ub > Uw Black patients need to have more 
illnesses to enroll in care program

status quo algorithm favors White patients

Uw

Ub

hospital’s 
algorithm (average of  repetitions)K := 7



region of improvement

more accurate

Uw

Ub



region of improvement

more accurate

more fair

Uw

Ub



applying our procedure

Uw

Ub

• we try three selection rules

• train the model to predict the expected 

number of illnesses 
using covariates without race


• pick 3% of the population with the highest 
predicted scores


• for each selection rule, test the existence of 
more accurate and more fair alternatives

candidate 
algorithms



applying our procedure

Uw

Ub

hospital’s 
algorithm

• our test yields 


• reject the null for 


• strong statistical evidence that 
suggests the existence of a more 
accurate and more fair alternative

p < 0.001
α < 0.01

candidate 
algorithms

go



the size of possible improvements

• we further explore the size of possible improvements in accuracy and fairness


• we test -improvability across different values of  and 


• improve accuracy simultaneously for both groups by at least  percent


• improve fairness by at least  percent


• larger  requires bigger improvements 

(δa, δa, δf) δa δf

δa
δf

δ



the size of possible improvements

δf

δa

-valuesp
• focus on the random-forest-based 

selection rule


• compute -values for different  pairs 

• set 5% significance level ( )

p (δa, δf)

α/2 = 0.025
-contour0.025

reject



the size of possible improvements

δf

δa

-valuesp
• focus on the random-forest-based 

selection rule


• compute -values for different  pairs 

• set 5% significance level ( ),

• we can reduce disparate impact by 64%, 

maintaining accuracy for all groups

p (δa, δf)

α/2 = 0.025

0.64

×



the size of possible improvements

δf

δa

-valuesp
• focus on the random-forest-based 

selection rule


• compute -values for different  pairs 

• set 5% significance level ( ),

• we can reduce disparate impact by 64%, 

maintaining accuracy for all groups

• we can also reduce accuracy while 

maintaining fairness, but only by 9%

p (δa, δf)

α/2 = 0.025

0.09

×



takeaways

• it is possible to simultaneously improve on the accuracy and the fairness of 
the status quo algorithm


• (statistically) large improvements in fairness are possible without 
compromising on accuracy, while the reverse is not true

in this application:



conclusion

• we develop a statistical framework and a test to determine whether there exist 
alternatives that outperform the status quo algorithm on multiple criteria


• our test is practical:

• it accommodates most fairness/accuracy metrics proposed in the literature

• it allows for any exogenous constraints on permissible algorithms


• our test has several theoretical guarantees:

• asymptotically valid, consistent, and (more) robust to manipulation by the analyst


• we illustrated its use on a dataset from Obermeyer et al. (2019)



questions or comments?

thank you ☺



comments on definition
the ideal definition 

 improves on  if 
 

 AND 
 AND 

 AND 
one of them holds strictly. 

a1 a0

Ur
A(a1) ≥ Ur

A(a0)
Ub

A(a1) ≥ Ub
A(a0)

|Ur
F(a1) − Ub

F(a1) | ≤ |Ur
A(a0) − Ub

A(ab) |

our alternative hypothesis 
 improves on  if 

 
 AND 
 AND 

 

a1 a0

Ur
A(a1) > Ur

A(a0)
Ub

A(a1) > Ub
A(a0)

|Ur
F(a1) − Ub

F(a1) | < |Ur
A(a0) − Ub

A(ab) |

• there is a subtle gap between what we want to test and what we can statistically test  
due to technical issues related to "testability"

• the space for the null hypothesis must be closed; otherwise, we cannot construct a 

test that is both valid and consistent (distributions on the boundary create challenges)


• however, we expect that this gap does not have a significant impact in practice



test results


